Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Unsupervised Sentiment Classifier on Summarized or Full Reviews

  • Conference paper
Web Information Systems Engineering – WISE 2010 (WISE 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6488))

Included in the following conference series:

Abstract

These days web users searching for opinions expressed by others on a particular product or service PS can turn to review repositories, such as Epinions.com or Imdb.com. While these repositories often provide a high quantity of reviews on PS, browsing through archived reviews to locate different opinions expressed on PS is a time-consuming and tedious task, and in most cases, a very labor-intensive process. To simplify the task of identifying reviews expressing positive, negative, and neutral opinions on PS, we introduce a simple, yet effective sentiment classifier, denoted SentiClass, which categorizes reviews on PS using the semantic, syntactic, and sentiment content of the reviews. To speed up the classification process, SentiClass summarizes each review to be classified using eSummar, a single-document, extractive, sentiment summarizer proposed in this paper, based on various sentence scores and anaphora resolution. SentiClass (eSummar, respectively) is domain and structure independent and does not require any training for performing the classification (summarization, respectively) task. Empirical studies conducted on two widely-used datasets, Movie Reviews and Game Reviews, in addition to a collection of Epinions.com reviews, show that SentiClass (i) is highly accurate in classifying summarized or full reviews and (ii) outperforms well-known classifiers in categorizing reviews.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beineke, P., Hastie, T., Manning, C., Vaithyanathan, S.: An Exploration of Sentiment Summarization. In: Proc. of AAAI, pp. 12–15 (2003)

    Google Scholar 

  2. Gong, Y.: Generic Text Summarization Using Relevance Measure and Latent Semantic Analysis. In: Proc. of ACM SIGIR, pp. 19–25 (2001)

    Google Scholar 

  3. Hu, X., Wu, B.: Classification and Summarization of Pros and Cons for Customer Reviews. In: Proc. of IEEE/WIC/ACM WI-IAT, pp. 73–76 (2009)

    Google Scholar 

  4. Jie, S., Xin, F., Wen, S., Quan-Xun, D.: BBS Sentiment Classification Based on Word Polarity. In: Proc. of ICCET, vol. 1, pp. 352–356 (2009)

    Google Scholar 

  5. Judea, P.: Probabilistic Reasoning in the Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  6. Kennedy, A., Inkpen, D.: Sentiment Classification of Movie Reviews Using Contextual Valence Shifters. Computational Intelligence 22(2), 110–125 (2006)

    Article  MathSciNet  Google Scholar 

  7. Koberstein, J., Ng, Y.-K.: Using Word Clusters to Detect Similar Web Documents. In: Lang, J., Lin, F., Wang, J. (eds.) KSEM 2006. LNCS (LNAI), vol. 4092, pp. 215–228. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Krestel, R., Bergler, S., Witte, R.: Minding the Source: Automatic Tagging of Reported Speech in Newspaper Articles. In: Proc. of LREC, pp. 2823–2828 (2008)

    Google Scholar 

  9. Ku, L., Liang, Y., Chen, H.: Opinion Extraction, Summarization and Tracking in News and Blog Corpora. In: Proc. of AAAI 2006 Spring Symposium on Computational Approaches to Analyzing Weblogs, pp. 100–107 (2006)

    Google Scholar 

  10. Lappin, S., Leass, H.: An Algorithm for Pronominal Anaphora Resolution. Computational Linguistics 20(4), 535–561 (1994)

    Google Scholar 

  11. Luger, G.: Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 6th edn. Addison-Wesley, Reading (2009)

    Google Scholar 

  12. Luhn, H.: The Automatic Creation of Literature Abstracts. IBM Journal of Research and Development 2(2), 159–165 (1958)

    Article  MathSciNet  Google Scholar 

  13. Melville, P., Gryc, W., Lawrence, R.: Sentiment Analysis of Blogs by Combining Lexical Knowledge with Text Classification. In: Proc. of KDD, pp. 1275–1284 (2009)

    Google Scholar 

  14. Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry. The MIT Press, Cambridge (1972)

    MATH  Google Scholar 

  15. Na, J., Khoo, C., Wu, P.: Use of Negation Phrases in Automatic Sentiment Classification of Product Reviews. Library Collections, Acquisitions, and Technical Services 29(2), 180–191 (2005)

    Article  Google Scholar 

  16. Pang, B., Lee, L.: A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts. In: Proc. of ACL, pp. 271–278 (2004)

    Google Scholar 

  17. Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval 2(1-2), 1–135 (2008)

    Article  Google Scholar 

  18. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment Classification using Machine Learning Techniques. In: Proc. of EMNLP, pp. 79–86 (2002)

    Google Scholar 

  19. Polanyi, L., Zaenen, A.: Contextual Valence Shifters. In: Computing Attitude and Affect in Text: Theory and Applications, pp. 1–10. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Radev, D., Hovy, E., McKeown, K.: Introduction to the Special Issue on Summarization. Computational Linguistics 28(4), 399–408 (2002)

    Article  Google Scholar 

  21. Wiebe, J., Wilson, T., Bruce, R., Bell, M., Martin, M.: Learning Subjective Language. Computational Linguistics 30, 277–308 (2004)

    Article  Google Scholar 

  22. Zhao, J., Liu, K., Wang, G.: Adding Redundant Features for CRFs-based Sentence Sentiment Classification. In: Proc. of EMNLP, pp. 117–126 (2008)

    Google Scholar 

  23. Zhuang, L., Jing, F., Zhu, X.: Movie Review Mining and Summarization. In: Proc. of ACM CIKM, pp. 43–50 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pera, M.S., Qumsiyeh, R., Ng, YK. (2010). An Unsupervised Sentiment Classifier on Summarized or Full Reviews. In: Chen, L., Triantafillou, P., Suel, T. (eds) Web Information Systems Engineering – WISE 2010. WISE 2010. Lecture Notes in Computer Science, vol 6488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17616-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17616-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17615-9

  • Online ISBN: 978-3-642-17616-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics