Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

The third of the S-Cube technology layers provides infrastructure capabilities for defining basic communication patterns and interactions involving as well as providing facilities for providing, for example, contextual and qualitative information about a service’s and their client’s environment and performance. Providing these capabilities to other layers allows service developers to use contextual information when building service based systems and provide cross layer and pro-active monitoring and adaptation of services (see research challenges). This chapter provides an overview of service infrastructures for the adaptation, monitoring and management of services which will provide these functions and concludes with a discussion of more detailed research challenges in the context of service infrastructures and their management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, A., Liu, H., Grosan, C., Xhafa, F.: Nature inspired meta-heuristics for grid scheduling: Single and multi-objective optimization approaches. In: Xhafa, F., Abraham, A. (eds.) Metaheuristics for Scheduling in Distributed Computing Environments, pp. 247–272. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Abraham, A., Liu, H., Zhao, M.: Particle swarm scheduling for work-flow applications in distributed computing environments. In: Metaheuristics for Scheduling in Industrial and Manufacturing Applications, pp. 327–342 (2008)

    Chapter  Google Scholar 

  3. Artsy, Y., Finkel, R.: Designing a process migration facility: the charlotte experience. Computer 22(9), 47–56 (1989)

    Article  Google Scholar 

  4. Babaoglu, O., Canright, G., Deutsch, A., Di Caro, G.A., Ducatelle, F., Gambardella, L.M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., Urnes, T.: Design patterns from biology for distributed computing. ACM Transactions on Autonomous and Adaptive Systems 1(1), 26–66 (2006)

    Article  Google Scholar 

  5. Banâtre, J.-P., Priol, T.: Chemical programming of future service-oriented architectures. JSW 4(7), 738–746 (2009)

    Article  Google Scholar 

  6. Banâtre, J.-P., Priol, T., Radenac, Y.: Service orchestration using the chemical metaphor. In: Brinkschulte, U., Givargis, T., Russo, S. (eds.) SEUS 2008. LNCS, vol. 5287, pp. 79–89. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Baresi, L., Guinea, S., Pasquale, L.: Self-healing bpel processes with dynamo and the jboss rule engine. In: ESSPE, pp. 11–20 (2007)

    Google Scholar 

  8. Bigus, J.P., Schlosnagle, D.A., Pilgrim III., J.R., Mills, W.N., Diao, Y.: Able: A toolkit for building multiagent autonomic systems. IBM Systems Journal 41(3), 350–371 (2002)

    Article  Google Scholar 

  9. Blair, G.S., Coulson, G., Blair, L., Duran-Limon, H., Grace, P., Moreira, R., Parlavantzas, N.: Reflection, self-awareness and self-healing in openorb. In: WOSS, pp. 9–14 (2002)

    Google Scholar 

  10. Bonabeau, E., Dorigo, M., Theraulaz, G.: Inspiration for optimization from social insect behaviour. Nature 406, 39–42 (2000)

    Article  Google Scholar 

  11. Brits, R., Engelbrecht, A.P., van den Bergh, F.: Locating multiple optima using particle swarm optimization. Applied Mathematics and Computation 189(2), 1859–1883 (2007)

    Article  MathSciNet  Google Scholar 

  12. Brueckner, S., Czap, H.: Organization, self-organization, autonomy and emergence: Status and challenges. International Transactions on Systems Science and Applications 2(1), 1–9 (2006)

    Google Scholar 

  13. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-aware service composition based on genetic algorithms. In: GECCO ’05: Proceedings of the 2005 conference on Genetic and evolutionary computation, New York, NY, USA, pp. 1069–1075. ACM Press (2005)

    Google Scholar 

  14. Champrasert, P., Lee, C., Suzuki, J.: Symbioticsphere: Towards an autonomic grid network system. In: CLUSTER, pp. 1–2 (2005)

    Google Scholar 

  15. Champrasert, P., Suzuki, J.: A biologically-inspired autonomic architecture for self-healing data centers. In: COMPSAC (1), pp. 103–112 (2006)

    Google Scholar 

  16. Champrasert, P., Suzuki, J.: Symbioticsphere: A biologically-inspired autonomic architecture for self-managing network systems. In: COMPSAC (2), pp. 350–352 (2006)

    Google Scholar 

  17. Cheng, S.-W., Garlan, D., Schmerl, B.R., Sousa, J.P., Spitnagel, B., Steenkiste, P.: Using architectural style as a basis for system self-repair. In: WICSA, pp. 45–59 (2002)

    Google Scholar 

  18. Corsava, S., Getov, V.: Intelligent architecture for automatic resource allocation in computer clusters. In: IPDPS, p. 201.1 (2003)

    Google Scholar 

  19. Csorba, M.J., Heegaard, P.E.: Swarm intelligence heuristics for component deployment. In: EUNICE. LNCS, vol. 6164, pp. 51–64. Springer, Heidelberg (2010)

    Google Scholar 

  20. Csorba, M.J., Meling, H., Heegaard, P.E.: Ant system for service deployment in private and public clouds. In: BADS ’10: Proceeding of the 2nd workshop on Bio-inspired algorithms for distributed systems, New York, NY, USA, pp. 19–28. ACM (2010)

    Google Scholar 

  21. Csorba, M.J., Meling, H., Heegaard, P.E., Herrmann, P.: Foraging for better deployment of replicated service components. In: DAIS ’09: Proceedings of the 9th IFIP WG 6.1 International Conference on Distributed Applications and Interoperable Systems. LNCS, vol. 5523, pp. 87–101. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Dasgupta, D.: Advances in artificial immune systems. IEEE Computational Intelligence Magazine, 40–49 (Nov. 2006)

    Article  Google Scholar 

  23. Dasgupta, D., González, F.A.: An immunity-based technique to characterize intrusions in computer networks. IEEE Trans. Evolutionary Computation 6(3), 281–291 (2002)

    Article  Google Scholar 

  24. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards architecture-based self-healing systems. In: WOSS, pp. 21–26 (2002)

    Google Scholar 

  25. Devescovi, D., Di Nitto, E., Dubois, D., Mirandola, R.: Self-organization algorithms for autonomic systems in the selflet approach. In: Autonomics ’07: Proceedings of the 1st international conference on Autonomic computing and communication systems, pp. 1–10, ICST, Brussels, Belgium, Belgium, 2007. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2007)

    Google Scholar 

  26. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  Google Scholar 

  27. Ding, Y., Sun, H., Hao, K.: A bio-inspired emergent system for intelligent web service composition and management. Knowledge-Based Systems 20, 457–465 (2007)

    Article  Google Scholar 

  28. Dorigo, M.: Ant algorithms solve difficult optimization problems. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 11–22. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  29. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stigmergy. Future Gener. Comput. Syst. 16(9), 851–871 (2000)

    Article  Google Scholar 

  30. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artificial Life 5(2), 137–172 (1999)

    Article  Google Scholar 

  31. Douglis, F., Ousterhout, J.: Transparent process migration: Design alternatives and the sprite implementation. Software - Practice and Experience 21, 757–785 (1991)

    Article  Google Scholar 

  32. Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence Theories, Methods, and Technologies. MIT Press, Cambridge (Sept. 2008)

    Google Scholar 

  33. Forrest, S.: Genetic algorithms. ACM Comput. Surv. 28(1), 77–80 (1996)

    Article  Google Scholar 

  34. Freitas, A.A., Timmis, J.: Revisiting the foundations of artificial immune systems for data mining. IEEE Trans. Evolutionary Computation 11(4), 521–540 (2007)

    Article  Google Scholar 

  35. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM Syst. J. 42(1), 5–18 (2003)

    Article  Google Scholar 

  36. Ghallab, M., Ecole Nationale, Constructions Aeronautiques, Isi, C.K., Penberthy, S., Smith, D.E., Sun, Y., Weld, D.: Pddl - the planning domain definition language. Technical report (1998)

    Google Scholar 

  37. Ghosh, D., Sharman, R., Rao, H.R., Upadhyaya, S.: Self-healing systems - survey and synthesis. Decission Support Systems 42(4), 2164–2185 (2007)

    Article  Google Scholar 

  38. Glass, M., Lukasiewycz, M., Reimann, F., Haubelt, C.D., Teich, J.: Symbolic reliability analysis of self-healing networked embedded systems. In: Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 139–152. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  39. Halima, R.B., Drira, K., Jmaiel, M.: A QoS-Oriented Reconfigurable Middleware for Self-Healing Web Services. In: ICWS, pp. 104–111 (2008)

    Google Scholar 

  40. Hinchey, M.G., Sterritt, R., Rouff, C.A.: Swarms and swarm intelligence. IEEE Computer 40(4), 111–113 (2007)

    Article  Google Scholar 

  41. Hossain, M.S., Alamri, A., El-Saddik, A.: A biologically inspired framework for multimedia service management in a ubiquitous environment. Concurrency and Computation: Practice and Experience 21(11), 1450–1466 (2009)

    Article  Google Scholar 

  42. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing—degrees, models, and applications. ACM Comput. Surv. 40(3), 1–28 (2008)

    Article  Google Scholar 

  43. Jennings, N.R.: Building complex, distributed systems: the case for an agent-based approach. Comms. of the ACM 44(4), 35–41 (2001)

    Article  Google Scholar 

  44. Kephart, J.O.: Research challenges of autonomic computing. In: ICSE ’05: Proceedings of the 27th international conference on Software engineering, pp. 15–22. ACM Press, New York (2005)

    Google Scholar 

  45. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer 36(1), 41–50 (2003)

    Article  Google Scholar 

  46. Kirkpatrick, S., Gelatt Jr., D., Vecchi, M.P.: Optimization by simmulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  47. Lee, C., Suzuki, J.: An immunologically-inspired autonomic framework for self-organizing and evolvable network applications. TAAS 4(4) (2009)

    Article  Google Scholar 

  48. Mei, L., Chan, W.K., Tse, T.H.: An adaptive service selection approach to service composition. In: Proceedings of the IEEE International Conference on Web Services (ICWS 2008), IEEE Computer Society Press, Los Alamitos (2008)

    Google Scholar 

  49. Mogul, J.C.: Emergent (mis)behavior vs. complex software systems. Technical Report HPL-2006-2, HP Laboratories Palo Alto (2005)

    Google Scholar 

  50. Olariu, S., Zomaya, A.Y. (eds.): Handbook of Bioinspired Algorithms and Applications. CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  51. Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. In: AINA, pp. 400–407 (2010)

    Google Scholar 

  52. Pierce, W.H.: Failure-tolerant Computer Design. Academic Press, London (1965)

    Google Scholar 

  53. Prokopenko, M.: Design vs. Self-organization. In: Prokopenko, M. (ed.) Advances in Applied Self-organizing Systems, pp. 3–17. Springer, London (2008)

    Chapter  Google Scholar 

  54. Psaier, H., Dustdar, S.: A survey on self-healing systems - approaches and systems. Computing 87(1) (2010)

    Article  Google Scholar 

  55. Saffre, F., Halloy, J., Shackleton, M., Deneubourg, J.L.: Self-organized service orchestration through collective differentiation. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36(6), 1237–1246 (2006)

    Article  Google Scholar 

  56. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges. ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)

    Article  Google Scholar 

  57. Salleh, S., Sanugi, B., Jamaluddin, H., Olariu, S., Zomaya, A.Y.: Enhanced simulated annealing technique for the single-row routing problem. The Journal of Supercomputing 21(3), 285–302 (2002)

    Article  Google Scholar 

  58. Seiter, L.M., Palmer, D.W., Kirschenbaum, M.: An aspect-oriented approach for modeling self-organizing emergent structures. In: SELMAS ’06: Proceedings of the 2006 international workshop on Software engineering for large-scale multi-agent systems, pp. 59–66. ACM Press, New York (2006)

    Chapter  Google Scholar 

  59. Serugendo, G.D.M., Gleizes, M.P., Karageorgos, A.: Self-organisation and emergence in mas: An overview. Informatica 30, 45–54 (2006)

    MATH  Google Scholar 

  60. Di Marzo Serugendo, G., Fitzgerald, J.: Designing and controlling trustworthy self-organising systems. Perada Magazine (2009)

    Google Scholar 

  61. Shapiro, M.W.: Self-healing in modern operating systems. ACM Queue 2(9), 66–75 (2005)

    Article  Google Scholar 

  62. Stellner, G.: Cocheck: checkpointing and process migration for mpi. In: The 10th International Parallel Processing Symposium, 1996, Proceedings of IPPS ’96, Apr. 1996, pp. 526–531 (1996)

    Google Scholar 

  63. Sterritt, R.: Autonomic computing. Innovations in Systems and Software Engineering 1(1), 79–88 (2005)

    Article  Google Scholar 

  64. Sudeikat, J., Braubach, L., Pokahr, A., Renz, W., Lamersdorf, W.: Systematically engineering self-organizing systems: The sodekovs approach. Electronic Communications of the EASST 17 (2009)

    Google Scholar 

  65. Sudeikat, J., Renz, W.: MASDynamics: Toward systemic modeling of decentralized agent coordination. In: David, K., Geihs, K. (eds.) Kommunikation in Verteilten Systemen. Informatik aktuell, pp. 79–90. Springer, Heidelberg (2009)

    Google Scholar 

  66. Sudeikat, J., Renz, W.: Programming adaptivity by complementing agent function with agent coordination: A systemic programming model and development methodology integration. Communications of SIWN 7, 91–102 (2009)

    Google Scholar 

  67. Sudeikat, J., Renz, W.: Shoaling glassfishes: Enabling decentralized web service management. In: 3rd International Conference in Sef-Adaptive and Self-Organizing Systems, pp. 291–292 (short paper). IEEE Computer Society Press, Los Alamitos (2009)

    Google Scholar 

  68. Sun, H., Ding, Y.: A scalable method of e-service workflow emergence based on the bio-network. In: Fourth International Conference on Natural Computation (2008)

    Google Scholar 

  69. Swiecicka, A., Seredynski, F., Zomaya, A.Y.: Multiprocessor scheduling and rescheduling with use of cellular automata and artificial immune system support. IEEE Trans. Parallel Distrib. Syst. 17(3), 253–262 (2006)

    Article  Google Scholar 

  70. Taheri, J., Zomaya, A.Y.: A simulated annealing approach for mobile location management. Computer Communications 30(4), 714–730 (2007)

    Article  Google Scholar 

  71. Tesauro, G., Chess, D.M., Walsh, W.E., Das, R., Segal, A., Whalley, I., Kephart, J.O., White, S.R.: A multi-agent systems approach to autonomic computing. In: AAMAS, pp. 464–471 (2004)

    Google Scholar 

  72. Vanrompay, Y., Rigole, P., Berbers, Y.: Genetic algorithm-based optimization of service composition and deployment. In: SIPE ’08: Proceedings of the 3rd international workshop on Services integration in pervasive environments, New York, NY, pp. 13–18. ACM (2008)

    Google Scholar 

  73. Viroli, M., Zambonelli, F.: A biochemical approach to adaptive service ecosystems. Inform. Sci. (2009)

    Google Scholar 

  74. Viroli, M., Holvoet, T., Ricci, A., Schelfthout, K., Zambonelli, F.: Infrastructures for the environment of multiagent systems. Autonomous Agents and Multi-Agent Systems 14(1), 49–60 (2007)

    Article  Google Scholar 

  75. Weyns, D., Holvoet, T.: An architectural strategy for self-adapting systems. In: SEAMS ’07: Proceedings of the 2007 International Workshop on Software Engineering for Adaptive and Self-Managing Systems, Washington, DC, USA, IEEE Computer Society (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

André, F. et al. (2010). Architectures & Infrastructure. In: Papazoglou, M.P., Pohl, K., Parkin, M., Metzger, A. (eds) Service Research Challenges and Solutions for the Future Internet. Lecture Notes in Computer Science, vol 6500. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17599-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17599-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17598-5

  • Online ISBN: 978-3-642-17599-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics