Nothing Special   »   [go: up one dir, main page]

Skip to main content

Bio Inspired Swarm Algorithm for Tumor Detection in Digital Mammogram

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6466))

Included in the following conference series:

Abstract

Microcalcification clusters in mammograms is the significant early sign of breast cancer. Individual clusters are difficult to detect and hence an automatic computer aided mechanism will help the radiologist in detecting the microcalcification clusters in an easy and efficient way. This paper presents a new classification approach for detection of microcalcification in digital mammogram using particle swarm optimization algorithm (PSO) based clustering technique. Fuzzy C-means clustering technique, well defined for clustering data sets are used in combination with the PSO. We adopt the particle swarm optimization to search the cluster center in the arbitrary data set automatically. PSO can search the best solution from the probability option of the Social-only model and Cognition-only model. This method is quite simple and valid, and it can avoid the minimum local value. The proposed classification approach is applied to a database of 322 dense mammographic images, originating from the MIAS database. Results shows that the proposed PSO-FCM approach gives better detection performance compared to conventional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pisani, et al.: Outcome of Screening by clinical examination of the breast in a trial in the phillipines. Int. J. Cancer (2006)

    Google Scholar 

  2. Kopans, D.B.: Breast Imaging, pp. 81–95. J.B.Lippincoff, Philadelphia (1989)

    Google Scholar 

  3. Romans, M.C.: Report from the Jacobs Institute – American Cancer Society Workshop on Mammogram screening and primary care providers, current issue, “women’s Health issues” Vol.2, pp. 169-172 (1992)

    Google Scholar 

  4. Sahiner, B., et al.: Classificaiton of Mass and Normal Breast Tissue: A convolution Neural Network classifier with spatial domain and Texture Images. IEEE trans. on Medical Imaging 15(5), 598–609 (1996)

    Article  Google Scholar 

  5. Liangei, et al.: A Study on Several Machine-Learning Methods for Classification of Malignant and Benign Clustered Microcalcificaitons. IEEE Trans. on Medical Imaging 24(3), 371–380 (2005)

    Article  Google Scholar 

  6. Cascio, D., et al.: Mammogram Segmentation by Contour Searching and Mass Lesions Classification with Neural Network. IEEE Trans. on Nuclear Science 53(5), 2827–2833 (2006)

    Article  Google Scholar 

  7. Kim, J.K., Park, H.W.: Statistical Textural Features for Detection of MIcrocalcifications in Digitized Mammograms. IEEE Trans. on Medical Imaging 18(3), 231–238 (1999)

    Article  Google Scholar 

  8. Strickland, R.N., Hahn: Wavelet Transforms for Detecting Microcalcificaitons in Mammograms. IEEE Trans. on Medical Imaging 15(2), 218–229 (1996)

    Article  Google Scholar 

  9. Wang, T.C., et al.: Detection of Microcalcifications in Digital Mammograms Using Wavelets. IEEE Trans. on Medical Imaging 1(4), 498–509 (1998)

    Article  Google Scholar 

  10. Verma, B., Zakos, J.: A computer Aided Diagnosis System for Digital Mammogram Based on Fuzzy Neural and Feature Extraction Techniques. IEEE Trans, on Informaiton Technology in Biomedicine 5(1), 46–54 (2001)

    Article  Google Scholar 

  11. Hopse, R., Karssemeijer, N.: Use of Normal Tissue Context in Computer Aided Detection of masses in Mamograms. IEEE Trans. on Medical Imaging 28(12), 2033–2041 (2009)

    Article  Google Scholar 

  12. Ferlay, J., et al.: cancer incidence, mortality and prevalence worldwide. In: GLOBOCAN 2002, IARC cancer base No.5 version 2.0, IARC press, Lyon (2004)

    Google Scholar 

  13. Yu, S.-N., Huang, Y.-K.: Detection of microcalcifications in digital mammograms using combined model-based and statistical textural features. Expert Systems with Applications 37, 5461–5469 (2010)

    Article  Google Scholar 

  14. American Cancer Society. Breast cancer facts and figures 2009-2010. American Cancer Society, Inc., Atlanta (2009a)

    Google Scholar 

  15. Gath, I., Geva, A.: Unsupervised Optimal Fuzzy Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7), 773–781 (1989)

    Article  MATH  Google Scholar 

  16. Lorette, A., Descombes, X., Zerubia, J.: Fully Unsupervised Fuzzy Clustering with Entropy Criterion. In: International Conference on Pattern Recognition (ICPR 2000), vol. 3, pp. 3998–4001 (2000)

    Google Scholar 

  17. Boujemaa: On Competitive Unsupervised Clustering. In: International Conference on Pattern Recognition (ICPR 2000), vol. 1, pp. 1631–1634 (2000)

    Google Scholar 

  18. Frigui, H., Krishnapuram, R.: Clustering by Competitive Agglomeration. Pattern Recognition Letters 30(7), 1109–1119 (1997)

    Article  Google Scholar 

  19. Suckling, J., Parker, J., et al.: The mammographic images analysis society digital mammogram database. In: Proc. 2nd Int. Workshop Digital mammography, ork, U.K., pp. 375–380 (July 1994)

    Google Scholar 

  20. ISO/IEC FCD 15 444-1V1.0. (December 1999), http://www.jpeg.org/public/fcd15444-1.pdf

  21. Ortega, A., Ramchandran, K.: Rate-distortion methods for image and video compression. IEEE Signal Processing Mag. 15, 23–50 (1998)

    Article  Google Scholar 

  22. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet transform. IEEE Trans. Image Processing 1, 205–220 (1992)

    Article  Google Scholar 

  23. Said, A., Pearlman, W.A.: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits, Syst. Video Technol. 6, 243–250 (1996)

    Article  Google Scholar 

  24. Calderbank, R.C., Daubechies, I., Sweldens, W., Yeo, B.: Wavelet transforms that map integers to integers. Appl. Comput. Harmon. Anal. 5(3), 332–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, B.: Histogram of Gabor Phase Patterns (HGPP): A Novel Object Representation Approach for Face Recognition. IEEE Transactions on Image Processing 16(1), 57–68 (2007)

    Article  MathSciNet  Google Scholar 

  26. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  27. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  28. Engelbrecht, A.: Computational Intelligence: An Introduction. John Wiley and Sons, Chichester (2002)

    Google Scholar 

  29. Shi, Y., Eberhart, R.: Parameter Selection in Particle Swarm Optimization. In: Evolutionary Programming VII: Proceedings of EP 2008, pp. 591–600 (1998)

    Google Scholar 

  30. Subash, et al.: Detection of masses in Digital mammograms. International Journal of Computer and Network Security 2(2), 78–86 (2010)

    Google Scholar 

  31. Liang, J.J., Suganthan, P.N.: Dynamic Multi-Swarm Particle Swarm Optimizer. In: IEEE Swarm Intelligence Symposium, Pasadena, CA, USA, pp. 124–129 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dheeba, J., Selvi, T. (2010). Bio Inspired Swarm Algorithm for Tumor Detection in Digital Mammogram. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2010. Lecture Notes in Computer Science, vol 6466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17563-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17563-3_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17562-6

  • Online ISBN: 978-3-642-17563-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics