Nothing Special   »   [go: up one dir, main page]

Skip to main content

Topological Hierarchical Tree Using Artificial Ants

  • Conference paper
Neural Information Processing. Theory and Algorithms (ICONIP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6443))

Included in the following conference series:

  • 2464 Accesses

Abstract

We propose in this paper a new approach for topological hierarchical tree clustering inspired from self-assembly behavior of artificial ants. Our method called THT (Topologial Hierarchical Tree) builds, autonomously and simultaneously, a topological and hierarchical partitioning of data. Each ”cluster” associated to one cell of a 2D grid is modeled by a tree. The artificial ants that we define dissimilarly build a tree where each ant represents a node/data. The benefit of this novel approach is the intuitive representation of hierarchical relations in the data. This is especially appealing in explorative data mining applications, allowing the inherent structure of the data unfold in highly intuitive fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  2. Goss, S., Deneubourg, J.-L.: Harvesting by a group of robots. In: Varela, F., Bourgine, P. (eds.) Proceedings of the First European Conference on Artificial Life, pp. 195–204. Elsevier Publishing, Amsterdam (1991)

    Google Scholar 

  3. Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Cliff, D., Husbands, P., Meyer, J.A. (eds.) Proceedings of the Third International Conference on Simulation of Adaptive Behavior, pp. 501–508. MIT Press, Cambridge (1994)

    Google Scholar 

  4. Deneubourg, J.-L., Goss, S., Franks, N.R., Sendova-Franks, A., Detrain, C., Chretien, L.: The dynamics of collective sorting: robot-like ant and ant-like robots. In: Proceedings of the First International Conference on Simulation of Adaptive Behavior, pp. 356–365 (1990)

    Google Scholar 

  5. Kuntz, P., Snyers, D., Layzell, P.J.: A stochastic heuristic for visualising graph clusters in a bi-dimensional space prior to partitioning. J. Heuristics 5(3), 327–351 (1998)

    Article  MATH  Google Scholar 

  6. Abraham, A., Ramos, V.: Web usage mining using artificial ant colony clustering and linear genetic programming. In: The Congress on Evolutionary Computation, Canberra, Australia, December 08-12, pp. 1384–1391. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  7. Handl, J., Knowles, J., Dorigo, M.: On the performance of ant-based clustering, pp. 204–213 (2003)

    Google Scholar 

  8. Azzag, H., Guinot, C., Oliver, A., Venturini, G.: A hierarchical ant based clustering algorithm and its use in three real-world applications. In: Dullaert, K.S.W., Sevaux, M., Springael, J. (eds.) European Journal of Operational Research, EJOR (2006) Special Issue on Applications of Metaheuristics

    Google Scholar 

  9. Theraulaz, G., Bonabeau, E., Sauwens, C., Deneubourg, J.-L., Lioni, A., Libert, F., Passera, L., Sol, R.-V.: Model of droplet formation and dynamics in the argentine ant (linepithema humile mayr). Bulletin of Mathematical Biology (2001)

    Google Scholar 

  10. Kohonen, T.: Self-organizing Maps. Springer, Berlin (2001)

    MATH  Google Scholar 

  11. Blake, C.L., Merz, C.L.: UCI repository of machine learning databases. Technical report, University of California, Department of information and Computer science, Irvine, CA (1998) , http://ftp.ics.uci.edu/pub/machine-learning-databases

  12. Shneiderman, B.: Tree visualization with tree-maps: A 2-D space-filling approach. ACM Transactions on Graphics 11, 92–99 (1992)

    Article  MATH  Google Scholar 

  13. Saporta, G., Youness, G.: Concordance entre deux partitions: quelques propositions et expériences. In: Actes des 8es rencontres de la SFC, Pointeá Pitre (2001)

    Google Scholar 

  14. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Recognition and Machine Intelligence 1(2), 224–227 (1979)

    Article  Google Scholar 

  15. Wu, L.H., Hsu, P.Y.: The perceptual eye view: A user-defined method for information visualization, Human-Computer Interaction. Interaction Platforms and Techniques, pp. 181–190

    Google Scholar 

  16. Mendis, B.S.U., Gedeon, T.D., Botzheim, J., Kóczy, L.T.: Generalised Weighted Relevance Aggregation Operators for Hierarchical Fuzzy Signatures. In: International Conference on Computational Inteligence for Modelling Control and Automation (CIMCA 2006), Sydney, Australia (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lebbah, M., Azzag, H. (2010). Topological Hierarchical Tree Using Artificial Ants. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Theory and Algorithms. ICONIP 2010. Lecture Notes in Computer Science, vol 6443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17537-4_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17537-4_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17536-7

  • Online ISBN: 978-3-642-17537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics