Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improved Bounds on the Planar Branchwidth with Respect to the Largest Grid Minor Size

  • Conference paper
Algorithms and Computation (ISAAC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6507))

Included in the following conference series:

Abstract

For graph G, let bw(G) denote the branchwidth of G and gm(G) the largest integer g such that G contains a g×g grid as a minor. We show that bw(G) ≤ 3gm(G) + 1 for every planar graph G. This is an improvement over the bound bw(G) ≤ 4gm(G) due to Robertson, Seymour and Thomas. Our proof is constructive and implies quadratic time constant-factor approximation algorithms for planar graphs for both problems of finding a largest grid minor and of finding an optimal branch-decomposition: (3 + ε)-approximation for the former and (2 + ε)-approximation for the latter, where ε is an arbitrary positive constant. We also study the tightness of the above bound. A k×h cylinder, denoted by C k,h , is the Cartesian product of a cycle on k vertices and a path on h vertices. We show that bw(C 2h, h ) = 2gm(C 2h,h ) = 2h and therefore the coefficient in the above upper bound is within a factor of 3/2 from the best possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 153–180 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., Feremans, C., Grigoriev, A., Penninkx, E., Sitters, R., Wolle, T.: On the minimum corridor connection problem and other generalized geometric problems. Computational Geometry: Theory and Applications 42, 939–951 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L., Grigoriev, A., Koster, A.M.C.A.: Treewidth lower bounds with brambles. Algorithmica 51(1), 81–98 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dorn, F., Fomin, F.V., Thilikos, D.M.: Catalan structures and dynamic programming in H-minor-free graphs. In: Proc. of the 2008 Symposium on Discrete Algorithms, SODA 2008, pp. 631–640 (2008)

    Google Scholar 

  6. Demaine, E.D., Hajiaghayi, M.T.: Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications through bidimensionality. In: Proc. of the 2005 Symposium on Discrete Algorithms, SODA 2005, pp. 682–689 (2005)

    Google Scholar 

  7. Demaine, E.D., Hajiaghayi, M.T.: Bidimensionality, map graphs, and grid minors, arXiv:Computer Science, DM/052070, v1 (2005)

    Google Scholar 

  8. Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.: Algorithmic graph minor theory: decomposition, approximation, and coloring. In: Proc. of the 2005 IEEE Symposium on Foundation of Computer Science, FOCS 2005, pp. 637–646 (2005)

    Google Scholar 

  9. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs: exploiting sphere cut branch decompositions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 95–106. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Grigoriev, A.: Tree-width and large grid minors in planar graphs (2008) (submitted for publication)

    Google Scholar 

  11. Grigoriev, A., Marchal, B., Usotskaya, N.: On planar graphs with large treewidth and small grid minors. Electronic Notes in Discrete Mathematics 32, 35–42 (2009)

    Article  MATH  Google Scholar 

  12. Gu, Q.P., Tamaki, H.: Optimal branch decomposition of planar graphs in O(n 3) time. ACM Trans. Algorithms 4(3), article No.30, 1–13 (2008)

    Article  MathSciNet  Google Scholar 

  13. Gu, Q.P., Tamaki, H.: Constant-factor approximations of branch-decomposition and largest grid minor of planar graphs in O(n 1 + ε) time. In: Proc. of the 2009 International Symposium on Algorithms and Computation (ISAAC 2009), pp. 984–993 (2009)

    Google Scholar 

  14. Gu, Q.P., Tamaki, H.: Improved bounds on the planar branchwidth with respect to the largest grid minor size, Technical Report, SFU-CMPT-TR 2009-17 (July 2009)

    Google Scholar 

  15. Gu, Q.P., Tamaki, H.: A radius-based linear-time-constructive upper bound on the branchwidth of planar hypergrpahs, Technical Report, SFU-CMPT-TR 2009-21 (November 2009)

    Google Scholar 

  16. Robertson, N., Seymour, P.D.: Graph minors III. Planar tree-width. J. of Combinatorial Theory, Series B 36, 49–64 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Robertson, N., Seymour, P.D.: Graph minors X. Obstructions to tree decomposition. J. of Combinatorial Theory, Series B 52, 153–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J. of Combinatorial Theory, Series B 62, 323–348 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thomas, R.: Tree decompositions of graphs, http://www.math.gatech.edu/~thomas/SLIDE/slide2.ps,p.32

  21. Tamaki, H.: A linear time heuristic for the branch-decomposition of planar graphs. In: Proc. of 11th Annual European Symposium on Algorithms, pp. 765–775 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gu, QP., Tamaki, H. (2010). Improved Bounds on the Planar Branchwidth with Respect to the Largest Grid Minor Size. In: Cheong, O., Chwa, KY., Park, K. (eds) Algorithms and Computation. ISAAC 2010. Lecture Notes in Computer Science, vol 6507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17514-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17514-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17513-8

  • Online ISBN: 978-3-642-17514-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics