Nothing Special   »   [go: up one dir, main page]

Skip to main content

History and Definitions

  • Chapter
Self-organising Software

Abstract

This chapter discusses the different types of self-organisation and emergence. For each term it discusses its origins and historical evolution and it describes the various definitions given so far with particular emphasis on those concerning software systems. Subsequently, it discusses the main mandatory and optional properties that characterise systems exhibiting self-organisation and emergence. Finally, for both terms it provides operational definitions suitable for use in Computer Science.

Defining and implementing Self-organisation and Emergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Benard phenomenon refers to the appearance of hexagonal cells or pattern rolls in liquids when heated from below. See Heylighen [43] for more detail.

  2. 2.

    Genetic Algorithms is a general approach to computer problem solving which is based on mutation and recombination of partial solutions, and the subsequent selective reproduction of the most “fit” new partial solution combinations.

  3. 3.

    In Chemistry autocatalytic reactions are reactions in which at least one of the products is also a reactant. Such reactions are fundamentally nonlinear, and this nonlinearity can lead to the spontaneous generation of order. A dramatic example of this order is the one found in living systems. This spontaneous order creation initially seems to contradict the Second Law of Thermodynamics. However, this contradiction is resolved when the disorder of both the system and its surroundings are taken into account and it is recognised that energy is dissipated into the environment to lower the entropy of the system.

  4. 4.

    The term Morphogenesis (from the Greek morphe = shape and genesis = creation) was originally introduced in biology to refer to a process that would cause an organism to develop its shape.

  5. 5.

    For example, in societies of termites the queen selects a location and deposits pheromones symmetrically at equal distances resulting in nest arches being equally distanced from the queen location [10].

  6. 6.

    Aristotle, Metaphysics, Book H 8.6.1045a:8-10.

  7. 7.

    Complexity can be simplistically perceived as the minimum amount of information necessary for system description. Various definitions of complexity exist; for example see [4].

  8. 8.

    The term function here refers to a process or operation and not to some direct input–output mechanism such as a mathematical function. For example, an foraging ant-colony can find the shortest path between food source and nest without it being an explicit function of the system.

  9. 9.

    http://www.bitstorm.org/gameoflife/

  10. 10.

    Chalmers argues that the only irreducible emergent phenomenon is consciousness and any other phenomenon can be in principle derived given initial conditions and computing power. See [18, 19] for more details.

  11. 11.

    See Stephan in [73] for more details on physical monism.

  12. 12.

    The values of iterated functions are calculated sequentially in a manner such that the output of each calculation is the input to the next one.

  13. 13.

    Heylighen [43] uses the term organisational closure to refer to the convergence of a system to a set of particular states as a result of a dynamic self-organisation process.

  14. 14.

    See [33, 64] for a discussion on how emergent phenomena are interpretations of epiphenomena produced from dynamic system operations.

References

  1. Abdallah, S., Lesser, V.R.: Modeling task allocation using a decision theoretic model. In: Proceedings of Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, Utrecht, Netherlands (2005)

    Google Scholar 

  2. Administrator of English Wikipedia: Diagram of convection cells. Creative Commons Attribution, vol. 2011 (2007). http://en.wikipedia.org/wiki/File:ConvectionCells.svg

  3. Ashby, W.R.: Principles of the self-organizing dynamic system. J. Gen. Psychol. 37, 125–128 (1947)

    Article  Google Scholar 

  4. Bar-Yam, Y.: Dynamics of Complex Systems. Perseus Books, Cambridge (1997)

    MATH  Google Scholar 

  5. Bedau, M.A.: Weak emergence. In: Tomberlin, J. (ed.) Philosophical Perspectives: Mind, Causation and World, vol. 11, pp. 375–399. Blackwell, Malden (1997)

    Google Scholar 

  6. Bedau, M.A.: Downward causation and the autonomy of weak emergence. Principia 6(1), 5–50 (2002)

    Google Scholar 

  7. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, vol. 2, 2nd edn. AK Peters, Wellesley (2001)

    MATH  Google Scholar 

  8. Bernon, C., Gleizes, M.P., Picard, G.: Enhancing self-organising emergent systems design with simulation. In: O’Hare, G.M., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) Engineering Self-Organising Systems. Third International Workshop, ESOA 2005, Utrecht, The Netherlands, 25 July 2005. Lecture Notes in Artificial Intelligence, vol. 4457, pp. 284–299. Springer, Berlin (2007). Revised Selected Papers

    Google Scholar 

  9. Blitz, D.: Emergent Evolution: Qualitative Novelty and the Levels of Reality. Episteme, vol. 19. Springer, New York (1992)

    Google Scholar 

  10. Bonabeau, E., Dorigo, M., Théraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, London (1999)

    MATH  Google Scholar 

  11. Brennan, R.W.: Holonic and multi-agent systems in industry. Knowl. Eng. Rev. 16(4), 375–381 (2001)

    Article  MathSciNet  Google Scholar 

  12. Briscoe, G., Dini, P.: Towards autopoietic computing. In: Colugnati, F.A.B., Lopes, L.C.R., Barretto, S.F.A. (eds.) Digital Ecosystems. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 67, pp. 199–212. Springer, Berlin (2010)

    Chapter  Google Scholar 

  13. Brueckner, S., Parunak, H.V.D.: Self-organising Manet management. In: Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.) Engineering Self-Organising Systems, Nature-Inspired Approaches to Software Engineering. Lecture Notes in Artificial Intelligence, vol. 2977, pp. 20–35. Springer, Berlin (2004)

    Google Scholar 

  14. Brueckner, S., di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.): Engineering Self-Organising Systems. Lecture Notes in Artificial Intelligence, vol. 3464. Springer, Berlin (2005)

    Google Scholar 

  15. Brueckner, S., Robertson, P., Bellur, U. (eds.): Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2008), Venice, Italy. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  16. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Théraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001). 2nd edn. (2003)

    Google Scholar 

  17. Capera, D., Georgé, J.P., Gleizes, M.P., Glize, P.: Emergence of organisations, emergence of functions. In: AISB’03 Symposium on Adaptive Agents and Multi Agent Systems (2003)

    Google Scholar 

  18. Chalmers, D.J.: Varieties of emergence. Tech. Rep., University of Arizona (2002)

    Google Scholar 

  19. Chalmers, D.J.: Strong and weak emergence. In: Davies, P., Clayton, P. (eds.) The Re-emergence of Emergence, pp. 244–256. Oxford University Press, Oxford (2006)

    Google Scholar 

  20. Churchland, P.: Matter and Consciousness. MIT Press, Cambridge (1984)

    Google Scholar 

  21. Collier, J.: Fundamental properties of self-organisation. In: Arshinov, V., Fuchs, C. (eds.) Emergence, Causality, Self-Organisation, pp. 150–166. NIA-Priroda, Moscow (2003)

    Google Scholar 

  22. Collier, J.: Self-organization, individuation and identity. Rev. Int. Philos. 59, 151–172 (2004)

    Google Scholar 

  23. Contractor, N.S., Seibold, D.R.: Theoretical frameworks for the study of structuring processes in group decision support system—adaptive structuration theory and self-organising systems theory. Hum. Commun. Res. 19(4), 528–563 (1993)

    Article  Google Scholar 

  24. Corning, P.A.: The re-emergence of “emergence”: a venerable concept in search of a theory. Complexity 7(6), 18–30 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Craig, W.R.: Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  26. Cunninham, B.: Capturing qualia: higher-order concepts and connectionism. Philos. Psychol. 14(1), 29–41 (2001)

    Article  Google Scholar 

  27. De Wolf, T., Holvoet, T.: Emergence versus self-organisation: different concepts but promising when combined. In: Brueckner, S., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) Engineering Self-Organising Systems. Lecture Notes in Computer Science, vol. 3464, pp. 77–91. Springer, Berlin (2005)

    Chapter  Google Scholar 

  28. De Wolf, T.D., Holvoet, T., Samaey, G.: Engineering self-organising emergent systems with simulation-based scientific analysis. In: Brueckner, S., Serugendo, G.D.M., Hales, D., Zambonelli, F. (eds.) Engineering Self-Organising Systems. Third International Workshop, ESOA 2005, Utrecht, The Netherlands, 25 July 2005. Lecture Notes in Artificial Intelligence, vol. 3910, pp. 138–152. Springer, Berlin (2006). Revised Selected Papers

    Google Scholar 

  29. Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.): Engineering Self-Organising Systems: Nature-Inspired Approaches to Software Engineering. Lecture Notes in Computer Science, vol. 2977. Springer, Berlin (2004)

    MATH  Google Scholar 

  30. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-organisation and emergence in MAS: an overview. Inform. Slov. 30(1), 45–54 (2006)

    MATH  Google Scholar 

  31. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-organisation in multi-agent systems. Knowl. Eng. Rev. 20(2), 165–189 (2005)

    Article  Google Scholar 

  32. Di Marzo Serugendo, G., Martin-Flatin, J.P., Jelasity, M., Zambonelli, F. (eds.): First International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007). IEEE Computer Society, Cambridge (2007)

    Google Scholar 

  33. Forrest, S.: Emergent computation: self-organizing, collective, and cooperative phenomena in natural and artificial computing network. In: Proceedings of the Ninth Annual CLNS Conference. MIT Press, Cambridge (1991)

    Google Scholar 

  34. Gershenson, C.: Self-organizing traffic lights. Complex Syst. 16(1), 29–53 (2005)

    Google Scholar 

  35. Glansdorff, P., Prigogine, I.: Thermodynamic theory of structure, stability and fluctuations. Am. J. Phys. 41, 147–148 (1973)

    Article  Google Scholar 

  36. Goldstein, J.: Emergence as a construct: history and issues. Emergence 1(1), 49–72 (1999)

    Article  Google Scholar 

  37. Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chezbellicositermes natalensis etcubitermes sp la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Soc. 6(1), 41–80 (1959). doi:10.1007/BF02223791

    Article  MathSciNet  Google Scholar 

  38. Haan, J.D.: How emergence arises. Ecol. Complex. 3, 293–301 (2007)

    Google Scholar 

  39. Hadeli, K., Valckenaers, P., Kollingbaum, M., Van Brussel, H.: Multi-agent coordination and control using stigmergy. Comput. Ind. 53(1), 75–96 (2004)

    Article  Google Scholar 

  40. Haken, H.: Information and Self-organization: A Macroscopic Approach to Complex Systems. Springer, Berlin (1988)

    MATH  Google Scholar 

  41. Haken, H.: Self-organization. Scholarpedia 3(8) (2008)

    Google Scholar 

  42. Harrington, A.: Reenchanted Science: Holism in German Culture from Wilhelm II to Hitler. Princeton University Press, New Jersey (1999)

    Google Scholar 

  43. Heylighen, F.: The science of self-organization and adaptivity. In: Kiel, L.D. (ed.) Knowledge Management, Organizational Intelligence and Learning, and Complexity, The Encyclopedia of Life Support Systems, EOLSS, pp. 253–280. Eolss Publishers, Oxford (2001)

    Google Scholar 

  44. Heylighen, F.: Complexity and self-organization. In: Bates, M.J., Maack, M.N. (eds.) Encyclopedia of Library and Information Sciences. Taylor & Francis, London (2008)

    Google Scholar 

  45. Holland, J.H.: Hidden Order: How Adaptation Builds Complexity. Addison-Wesley, Longman, Redwood City (1995)

    Google Scholar 

  46. Holland, J.H.: Emergence: From Chaos to Order. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  47. Holland, J.: Studying complex adaptive systems. J. Syst. Sci. Complex. 19(1), 1–8 (2006). doi:10.1007/s11424-006-0001-z

    Article  MathSciNet  MATH  Google Scholar 

  48. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  49. Ishida, T., Gasser, L., Yokoo, M.: Organisation self-design in distributed production systems. IEEE Trans. Knowl. Data Eng. 4(2), 123–134 (1992)

    Article  Google Scholar 

  50. Johnson, C.W.: What are emergent properties and how do they affect the engineering of complex systems? Reliab. Eng. Syst. Saf. 91(12), 1475–1481 (2006)

    Article  Google Scholar 

  51. Jones, J.D.: Bifurcations. Accessed on 24-07-2011, http://www.mcasco.com/Order/bifurcat.html (2011)

  52. Kaufman, S.: The Origin of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York (1993)

    Google Scholar 

  53. Kaufman, S.: At Home in the Universe: The Search for the Laws of Self-Organization and Complexity. Oxford University Press, London (1995)

    Google Scholar 

  54. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003). doi:10.1109/MC.2003.1160055

    Article  MathSciNet  Google Scholar 

  55. Koestler, A.: The Ghost in the Machine. Hutchison and Co, London (1967), the Danube edn.

    Google Scholar 

  56. Langton, C.: Artificial Life: An Overview. MIT Press, Cambridge (1997)

    Google Scholar 

  57. Lewes, J.: Problems of Life and Mind, vol. 2. Kegan Paul, London (1875)

    Google Scholar 

  58. Malvile, E., Bourdon, F.: Task allocation: a group self design approach. In: International Conference on Multi-Agent Systems, pp. 166–173. IEEE Press, New York (1998)

    Google Scholar 

  59. Mamei, M., Zambonelli, F.: Programming stigmergic coordination with the TOTA middleware. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS’05, The Netherlands, pp. 415–422. ACM, New York (2005)

    Chapter  Google Scholar 

  60. Maturana, F., Norrie, D.H.: Multi-agent mediator architecture for distributed manufacturing. J. Intell. Manuf. 7, 257–270 (1996)

    Article  Google Scholar 

  61. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living. Boston Studies in the Philosophy of Science. Springer, Berlin (1991). 2nd edn. (1980), 1st edn. (1973)

    Google Scholar 

  62. Maturana, H.R., Varela, F.J.: The Tree of Knowledge: The Biological Roots of Human Understanding. Shambhala, Halifax (1992)

    Google Scholar 

  63. Meiss, J.: Differential Dynamical Systems. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  64. Muller, J.P.: Emergence of collective behaviour and problem solving. In: Omicini, A., Peta, P., Pitt, J. (eds.) Engineering Societies in the Agents World 4th International Workshop, ESAW 2003, London, UK, 29–31 October 2003. Lecture Notes in Artificial Intelligence, vol. 3071, pp. 1–20. Springer, Berlin (2004)

    Chapter  Google Scholar 

  65. Nicolis, G., Prigogine, I.: Self-Organization in Non-Equilibrium Systems. Wiley, New York (1977)

    Google Scholar 

  66. Paslack, F.: Urgeschichte der Selbstorganisation. Vieweg, Braunschweig (1991)

    Google Scholar 

  67. Picard, G., Bernon, C., Gleizes, M.P.: ETTO: emergent timetabling by cooperative self-organization. In: Engineering Self-Organizing Applications—Third International Workshop (ESOA) at the Fourth International Joint Conference on Autonomous Agents and Multi-Agents Systems (AAMAS’05), July 2005, Utrecht, Netherlands. Lecture Notes in Artificial Intelligence (LNAI), vol. 3910, pp. 31–45. Springer, Berlin (2005)

    Google Scholar 

  68. Polani, D.: Foundations and formalizations of self-organization. In: Prokopenko, M. (ed.) Advances in Applied Self-Organizing Systems, pp. 19–37. Springer, London (2008)

    Chapter  Google Scholar 

  69. Prokopenko, M.: Design vs. self-organization. In: Prokopenko, M. (ed.) Advances in Applied Self-organizing Systems, pp. 3–17. Springer, London (2008)

    Chapter  Google Scholar 

  70. Rumelhart, D.E., McClelland, J.L. (eds.): Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Foundations, vol. 1. MIT Press, Cambridge (1986)

    Google Scholar 

  71. Shehory, O., Kraus, S., Yadgar, O.: Emergent cooperative goal-satisfaction in large scale automated-agent systems. Artif. Intell. 110(1), 1–55 (1999)

    Article  MATH  Google Scholar 

  72. Stassner, J., Dobson, S., Fortes, J., Gowsami, K. (eds.): International Conference on Autonomic Computing (ICAC 2008). IEEE Press, Chicago (2008)

    Google Scholar 

  73. Stephan, A.: Emergentism, irreducibility, and downward causation. Grazer Philos. Stud. 65(1), 77–93 (2002)

    Google Scholar 

  74. Sternberg, R.J., Mio, J.S.: Cognitive Psychology. Wadsworth, Belmont (2005)

    Google Scholar 

  75. Varela, F.J.: Principles of Biological Autonomy. Elsevier, New York (1979)

    Google Scholar 

  76. Vrba, P., Tichy, P., Mar̆ik, V., Hall, K.H., Staron, R., Maturana, F.P., Kadera, P.: Rockwell automation’s holonic and multiagent control systems compendium. IEEE Trans. Syst. Man Cybern. Part C, Appl. Rev. 41(1), 14–30 (2011)

    Article  Google Scholar 

  77. Yousif, M., Rana, O.F., Fortes, J., Goswami, K. (eds.): International Conference on Autonomic Computing (ICAC 2007), Jacksonville, Florida, USA. IEEE Press, New York (2007)

    Google Scholar 

  78. Zambonelli, F., Parunak, H.V.D.: Signs of a revolution in computer science and software engineering. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) Engineering Societies in the Agents World 3rd International Workshop, ESAW 2002, Madrid, Spain, September 2002. Lecture Notes in Computer Science, vol. 2577, pp. 120–125. Springer, Berlin (2003)

    Google Scholar 

  79. Zambonelli, F., Gleizes, M.P., Mamei, M., Tolksdorf, R.: Spray computers: frontiers of self-organization for pervasive computing. In: Second International Workshop on Theory and Practice of Open Computational Systems (TAPOCS 2004) in 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’04), Modena, Italy, pp. 397–402. IEEE Press, New York (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Karageorgos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Di Marzo Serugendo, G., Gleizes, MP., Karageorgos, A. (2011). History and Definitions. In: Di Marzo Serugendo, G., Gleizes, MP., Karageorgos, A. (eds) Self-organising Software. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17348-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17348-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17347-9

  • Online ISBN: 978-3-642-17348-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics