Nothing Special   »   [go: up one dir, main page]

Skip to main content

Medical Applications of Cartesian Genetic Programming

  • Chapter
Cartesian Genetic Programming

Part of the book series: Natural Computing Series ((NCS))

Abstract

Cartesian Genetic Programming (CGP) is now attracting considerable recognition as an evolutionary algorithm that not only delivers high performance, but one that has a representation that is flexible and easy to adapt to a range of applications. Problems based in medicine stand to benefit greatly due their diverse and highly non-linear nature, which can exploit this flexibility. This chapter aims to give an overview of the types of medical problems that may be addressed and illustrates this by considering in detail, a number of published case examples. Finally, for EC practitioners, some advice on the common pit falls, benefits and rewards of medical applications and, specifically, obtaining patient data is offered at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cancer Research UK. http://info.cancerresearchuk.org/cancerstats/types/breast/incidence/, 27-1-2011 ed.

  2. V. Andolina, S. Lillé, and K. M. Willison, Mammographic Imaging: A Practical Guide. Lippincott Williams and Wilkins, 2001.

    Google Scholar 

  3. H. D. Cheng, X. Cai, X. Chen, L. Hu, and X. Lou, “Computer-aided detection and classification of microcalcifications in mammograms: a survey,” Pattern Recognition, vol. 36, pp. 2967–2991, 2003.

    Article  MATH  Google Scholar 

  4. D. B. Kopans, Breast Imaging. Lippincott Williams and Wilkins, 2006.

    Google Scholar 

  5. American College of Radiology, Breast I Reporting and Data System Atlas (BI-RADS): Mammography, 4 ed., 2003.

    Google Scholar 

  6. R. Gonzalez and R. Woods, Digital Image Processing. Prentice Hall, 2002.

    Google Scholar 

  7. J. C. Fu, S. K. Lee, S. T. C. Wong, J. Y. Yeh, A. H. Wang, and H. K. Wu, “Image segmentation feature selection and pattern classification for mammographic microcalcifications,” Computerized Medical Imaging and Graphics, vol. 29, pp. 419–429, 2005.

    Article  Google Scholar 

  8. M. Gavrielides, J. Lo, R. Vargas-Voracek, and C. Floyd, “Segmentation of suspicious clustered microcalcifications in mammograms,” Medical Physics, vol. 27, pp. 13–22, 2000.

    Article  Google Scholar 

  9. J. Kim and H. Park, “Statistical Textural Features for Detection of Microcalcifications in Digitized Mammograms,” IEEE Transactions Medical Imaging, vol. 18, no. 3, pp. 231–238, 1999.

    Article  MATH  Google Scholar 

  10. D. Hope, S. L. Smith, and E. Munday, “Evolutionary Algorithms in the Classification of Mammograms,” in IEEE Symposium on Computational Intelligence in Image and Signal Processing, pp. 258–265, 2007.

    Chapter  Google Scholar 

  11. K. Völk, J. F. Miller, and S. L. Smith, “Multiple Network CGP for the Classification of Mammograms,” in Applications of Evolutionary Computing, vol. 5484 of LNCS, pp. 405–413, 2009.

    Chapter  Google Scholar 

  12. J. A. Walker, K. Völk, S. L. Smith, and J. F. Miller, “Parallel evolution using multi-chromosome Cartesian genetic programming,” Genetic Programming and Evolvable Machines, vol. 10, no. 4, pp. 417–445, 2009.

    Article  Google Scholar 

  13. J. F. Miller and S. L. Smith, “Redundancy and Computational Efficiency in Cartesian Genetic Programming,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 2, pp. 167–174, 2006.

    Article  Google Scholar 

  14. Parkinson’s UK. http://www.parkinsons.org.uk/about_parkinsons/what_is_parkinsons.aspx, 28-1-11 ed.

  15. Parkinson’s Disease Foundation. http://www.pdf.org/en/parkinson_statistics, 28-1-11 ed.

  16. C. Levine, K. R. Fahrbach, A. D. Siderowf, R. P. Estok, V. M. Ludensky, and S. D. Ross, Diagnosis and Treatment of Parkinson’s Disease: A Systematic Review of the literature. No. 57, Agency for Healthcare Research and Quality, 2003.

    Google Scholar 

  17. S. L. Smith, P. Gaughan, D. M. Halliday, Q. Ju, N. M. Aly, and J. R. Playfer, “Diagnosis of Parkinson’s Disease using Evolutionary Algorithms,” Genetic Programming and Evolvable Machines, vol. 8, pp. 433–447, 2007.

    Article  Google Scholar 

  18. The main symptoms of Parkinson’s. http://www.parkinsons.org.uk/about_parkinsons/signs_and_symptoms/the_main_symptoms.aspx, 23-2-11 ed.

  19. A. Berardelli, J. C. Rothwell, P. D. Thompson, and M. Hallett, “Pathophysiology of bradykinesia in Parkinson’s disease,” Brain, vol. 124, no. 11, pp. 2131–2146, 2001.

    Article  Google Scholar 

  20. M. A. Lones, Enzyme Genetic Programming. PhD thesis, University of York, 2003.

    Google Scholar 

  21. M. A. Lones and A. M. Tyrrell, “Biomimetic representation with enzyme genetic programming,” Genetic Programming and Evolvable Machines, vol. 3, no. 2, pp. 193–217, 2002.

    Article  MATH  Google Scholar 

  22. M. A. Lones and A. M. Tyrrell, “Modelling biological evolvability: Implicit context and variation filtering in enzyme genetic programming,” BioSystems, vol. 76, no. 2, pp. 229–238, 2004.

    Article  Google Scholar 

  23. S. L. Smith, S. Leggett, and A. M. Tyrrell, “An implicit context representation for evolving image processing filters,” in Proc. Workshop on Evolutionary Computation in Image Analysis and Signal Processing, vol. 3449 of LNCS, pp. 407–416, 2005.

    Google Scholar 

  24. M. A. Lones and A. M. Tyrrell, “Enzyme genetic programming,” in Proc. of the Congress on Evolutionary Computation (J.-H. Kim, B.-T. Zhang, G. Fogel, and I. Kuscu, eds.), vol. 2, pp. 1183–1190, IEEE Press, 2001.

    Google Scholar 

  25. A. Hazell and S. L. Smith, “Towards an Objective Assessment of Alzheimer’s Disease: The Application of a Novel Evolutionary Algorithm in the Analysis of Figure Copying Tasks,” in Proc. GECCO Workshop on Medical Applications of Genetic and Evolutionary Computation, 2008.

    Google Scholar 

  26. M. Knapp and M. Prince, Dementia UK: A report to the Alzheimer’s Society on the prevalence and economic cost of dementia in the UK. Alzheimer’s Society, 2007.

    Google Scholar 

  27. C. Ferri, M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguli, K. Hall, K. Hasegawa, H. Hendrie, Y. Huang, A. Jorm, C. Mathers, P. R. Menezes, E. Rimmer, and M. Scazufca, “Global prevalence of dementia: A Delphi consensus study,” The Lancet, vol. 266, no. 9503, pp. 2112–2117, 2006.

    Article  Google Scholar 

  28. K. Blennow, M. Leon, and H. Zetterberg, “Alzheimer’s disease,” The Lancet, vol. 268, pp. 387–403, 2006.

    Article  Google Scholar 

  29. W. Wolfson, “Unraveling the Tangled Brain of Alzheimer’s,” Chemistry and Biology, vol. 15, no. 2, pp. 89–90, 2008.

    Article  Google Scholar 

  30. G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, and E. M. Stadlan, “Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease,” Neurology, vol. 34, pp. 939–944, 1984.

    Google Scholar 

  31. Y. Shimada, K. Meguro, M. Kasai, M. Shimada, S. Yamaguchi, and A. Yamadori, “Necker cube copying ability in normal elderly and Alzheimer’s disease. A community-based study: The Tajiri project,” Psychogeriatrics, vol. 6, pp. 4–9, 2006.

    Article  Google Scholar 

  32. J. Bremner, R. Morse, S. Hughes, and G. Andreasen, “Relations between drawing cubes and copying line diagrams of cubes in 7-to 10-year old children,” Child Development, vol. 71, no. 3, pp. 621–634, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, S.L., Walker, J.A., Miller, J.F. (2011). Medical Applications of Cartesian Genetic Programming. In: Miller, J. (eds) Cartesian Genetic Programming. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17310-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17310-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17309-7

  • Online ISBN: 978-3-642-17310-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics