Nothing Special   »   [go: up one dir, main page]

Skip to main content

Discovering Novelty in Gene Data: From Sequential Patterns to Visualization

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6455))

Included in the following conference series:

Abstract

Data mining techniques allow users to discover novelty in huge amounts of data. Frequent pattern methods have proved to be efficient, but the extracted patterns are often too numerous and thus difficult to analyse by end-users. In this paper, we focus on sequential pattern mining and propose a new visualization system, which aims at helping end-users to analyse extracted knowledge and to highlight the novelty according to referenced biological document databases. Our system is based on two visualization techniques: Clouds and solar systems. We show that these techniques are very helpful for identifying associations and hierarchical relationships between patterns among related documents. Sequential patterns extracted from gene data using our system were successfully evaluated by two biology laboratories working on Alzheimers disease and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cong, G.A., Tung, X., Pan, F., Yang, J.: Farmer: Finding interesting rule groups in microarray datasets. In: SIGMOD Conference, pp. 143–154 (2004)

    Google Scholar 

  2. Salle, P., Bringay, S., Teisseire, M., Chakkour, F., Roche, M., Rassoul, R.A., Verdier, J.M., Devau, G.: Genemining: Identification, visualization, and interpretation of brain ageing signatures. In: MIE, pp. 767–771 (2009)

    Google Scholar 

  3. Zeeberg, B.R., Feng, W., Wang, G., Wang, M.D., Fojo, A.T., Sunshine, M., Narasimhan, S., Kane, D.W., Reinhold, W.C., Lababidi, S., Bussey, K.J., Riss, J., Barrett, J.C., Weinstein, J.N.: Gominer: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 4, 28 (2003)

    Article  Google Scholar 

  4. Salle, P., Bringay, S., Teisseire, M.: Mining discriminant sequential patterns for aging brain. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds.) Artificial Intelligence in Medicine. LNCS, vol. 5651, pp. 365–369. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Saneifar, H., Bringay, S., Laurent, A., Teisseire, M.: S2mp: Similarity measure for sequential patterns. In: AusDM, pp. 95–104 (2008)

    Google Scholar 

  6. Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: VL, pp. 336–343 (1996)

    Google Scholar 

  7. Chi, E.H.-h, Riedl, J., Shoop, E., Carlis, J.V., Retzel, E., Barry, P.: Flexible information visualization of multivariate data from biological sequence similarity searches. In: IEEE Visualization, pp. 133–140 (1996)

    Google Scholar 

  8. Lungu, M., Xu, K.: Biomedical information visualization. In: Kerren, A., Ebert, A., Meyer, J. (eds.) GI-Dagstuhl Research Seminar 2007. LNCS, vol. 4417, pp. 311–342. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Brog, I., Groenen, P.: Modern multidimensional scaling: Theory and applications. Springer, New York (1997)

    Book  Google Scholar 

  10. Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In: GDRAWING: Conference on Graph Drawing (GD) (2004)

    Google Scholar 

  11. de Leeuw, J.: Convergence of the majorization method for multidimensional scaling. J. Classification 5, 163–180 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Priyantha, N.B., Balakrishnan, H., Demaine, E.D., Teller, S.J.: Anchor-free distributed localization in sensor networks. In: Akyildiz, I.F., Estrin, D., Culler, D.E., Srivastava, M.B. (eds.) SenSys, pp. 340–341. ACM, New York (2003)

    Google Scholar 

  13. Gansner, E.R., Hu, Y.: Efficient node overlap removal using a proximity stress model. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 206–217. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Nguyen, T., Zhang, J.: A novel visualization model for web search results. IEEE Trans. Vis. Comput. Graph 12, 981–988 (2006)

    Article  Google Scholar 

  15. Jacquemin, C., Folch, H., Garcia, K., Nugier, S.: Visualisation interactive d’espaces documentaires. Information Interaction Intelligence 5, 59–84 (2005)

    Google Scholar 

  16. Ammenwerth, E.: Can evaluation studies benefit from triangulation? a case study. International Journal of Medical Informatics 70, 237–248 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sallaberry, A., Pecheur, N., Bringay, S., Roche, M., Teisseire, M. (2010). Discovering Novelty in Gene Data: From Sequential Patterns to Visualization. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17277-9_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17277-9_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17276-2

  • Online ISBN: 978-3-642-17277-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics