Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Survey of Recent Trends in One Class Classification

  • Conference paper
Artificial Intelligence and Cognitive Science (AICS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6206))

Included in the following conference series:

Abstract

The One Class Classification (OCC) problem is different from the conventional binary/multi-class classification problem in the sense that in OCC, the negative class is either not present or not properly sampled. The problem of classifying positive (or target) cases in the absence of appropriately-characterized negative cases (or outliers) has gained increasing attention in recent years. Researchers have addressed the task of OCC by using different methodologies in a variety of application domains. In this paper we formulate a taxonomy with three main categories based on the way OCC has been envisaged, implemented and applied by various researchers in different application domains. We also present a survey of current state-of-the-art OCC algorithms, their importance, applications and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tax, D., Duin, R.: Uniform object generation for optimizing one-class classifiers. J. Machine Learning Research 2, 155–173 (2001)

    MATH  Google Scholar 

  2. Tax, D.: One Class Classification. PhD thesis, Delft University of Technology (2001)

    Google Scholar 

  3. Yu, H., Han, J., Chang, K.C.C.: Positive-example based learning for web page classification using svm. In: Proc. Eighth International Conference on Knowledge Discovery and Data Mining (KDD 2002), pp. 239–248 (2002)

    Google Scholar 

  4. Moya, M., Koch, M., Hostetler, L.: One-class classifier networks for target recognition applications. In: Proceedings World Congress on Neural Networks, pp. 797–801 (1993)

    Google Scholar 

  5. Ritter, G., Gallegos, M.: Outliers in statistical pattern recognition and an application to automatic chromosome classification. Pattern Recognition Letters 18, 525–539 (1997)

    Article  Google Scholar 

  6. Bishop, C.: Novelty detection and neural network validation. IEEE Proceedings on Vision, Image and Signal Processing, Special Issue on Applications of Neural Networks 141(4), 217–222 (1994)

    Article  Google Scholar 

  7. Japkowicz, N.: Concept-Learning in the absence of counterexamples: An autoassociation-based approach to classification. PhD thesis, New Brunswick Rutgers, The State University of New Jersey (1999)

    Google Scholar 

  8. Liu, B., Dai, Y., Li, X., Lee, W., Yu, P.: Building text classifiers using positive and unlabeled examples. In: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM 2003) (2003)

    Google Scholar 

  9. Li, X., Liu, B.: Learning to classify texts using positive and unlabeled data. In: 18th International Joint Conf. on Artificial Intelligence (IJCAI 2003), pp. 587–594 (2003)

    Google Scholar 

  10. Lee, W., Liu, B.: Learning with positive and unlabeled examples using weighted logistic regression. In: Proceedings of the 20th International Conference on Machine Learning (ICML 2003) (2003)

    Google Scholar 

  11. Tax, D., Duin, R.: Data domain description using support vectors. In: Proc. ESAN 1999, Brussels, pp. 251–256 (1999)

    Google Scholar 

  12. Tax, D., Duin, R.: Support vector domain description. Pattern Recognition Letters 20, 1191–1199 (1999)

    Article  Google Scholar 

  13. Scholkopf, B., Williamson, R., Smola, A., Taylor, J., Platt, J.: Support vector method for novelty detection. In: Solla, S.A., Leen, T., Muller, K. (eds.) Neural Information Processing Systems, pp. 582–588 (2000)

    Google Scholar 

  14. Blum Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of 11th Annual conference on Computation Learning Theory, pp. 92–100. ACM Press, New York (1998)

    Google Scholar 

  15. Valiant, L.: Theory of the learnable. ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  16. Muggleton, S.: Learning from the positive data. Machine Learning (2001)

    Google Scholar 

  17. Skabar, A.: Single-class classifier learning using neural networks: An application to the prediction of mineral deposits. In: Proceedings of the Second International Conference on Machine Learning and Cybernetics, vol. 4, pp. 2127–2132 (2003)

    Google Scholar 

  18. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 1–47 (1998)

    Article  Google Scholar 

  19. Scholkopf, B., Williamson, R., Smola, A., Taylor, J.: Sv estimation of a distributions support. In: Advances in Neural Information Processing Systems (1999)

    Google Scholar 

  20. Manevitz, L.M., Yousef, M.: One-class svms for document classification. Journal of Machine Learning Research 2, 139–154 (2001)

    MATH  Google Scholar 

  21. Benediktsson, J., Swain, P.: Consensus theoretic classification methods. IEEE Transactions on Systems, Man and Cybernetics 22(4), 688–704 (1992)

    Article  MATH  Google Scholar 

  22. Yu, H.: Single-class classification with mapping convergence. Machine Learning 61(1), 49–69 (2005)

    Article  Google Scholar 

  23. de Ridder, D., Tax, D., Duin, R.: An experimental comparison of one-class classification methods. In: Proceedings of the 4th Annual Conference of the Advacned School for Computing and Imaging, Delft (1998)

    Google Scholar 

  24. Manevitz, L., Yousef, M.: Document classification on neural networks using only positive examples. In: Proc. of 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 304–306 (2000)

    Google Scholar 

  25. De Comite, F., Denis, F., Gillerson, R., Letouzey, F.: Positive and unlabeled examples help learning. In: Watanabe, O., Yokomori, T. (eds.) ALT 1999. LNCS (LNAI), vol. 1720, pp. 219–230. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  26. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  27. Letouzey, F., Denis, F., Gilleron, R.: Learning from positive and unlabeled examples. In: Algorithmic Learning Theory, 11th International Conference, Sydney, Australia (2000)

    Google Scholar 

  28. Wang, Q., Lopes, L.S., Tax, D.J.: Visual object recognition through one-class learning. In: International Conference on Image Analysis and Recognition, pp. 463–470 (2004)

    Google Scholar 

  29. Liu, B., Lee, W., Yu, P., Li, X.: Partially supervised classification of text documents. In: Proc. of ICML (2002)

    Google Scholar 

  30. Dempster, A.P., Laird, N.M., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society (1977)

    Google Scholar 

  31. Yu, H., Han, J., Chang, K.: PEBL: Web page classification without negative examples. IEEE Transactions on Knowledge and Data Engineering 16(1) (2004)

    Google Scholar 

  32. Rocchio, J.: Relevant feedback in information retrieval. In: Salton, G. (ed.) The SMART retrieval system- experiments in automatic document processing, NJ, Englewood Cliffs (1971)

    Google Scholar 

  33. Lang, K.: Newsweeder: Learning to filter netnews. In: ICML 1995 (1995)

    Google Scholar 

  34. Peng, T., Zuo, W., He, F.: Text classification from positive and unlabeled documents based on ga. In: Proc. of VECPAR 2006, Brazil (2006)

    Google Scholar 

  35. Koppel, M., Schler, J.: Authorship verification as a one-class classification problem. In: Proceedings of the twenty-first International Conference on Machine learning, Alberta, Canada, vol. 69 (2004)

    Google Scholar 

  36. Denis, F., Gilleron, R., Tommasi, M.: Text classification from positive and unlabeled examples. In: 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (2002)

    Google Scholar 

  37. Zeng, Z., Fu, Y., Roisman, G.I., Wen, Z., Hu, Y., Huang, T.S.: One-class classification for spontaneous facial expression analysis. In: Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition, pp. 281–286 (2006)

    Google Scholar 

  38. Gardner, B., Krieger, A.M., Vachtsevanos, G., Litt, B.: One-class novelty detection for seizure analysis from intracranial eeg. Journal of Machine Learning Research 7, 1025–1044 (2006)

    MathSciNet  MATH  Google Scholar 

  39. Spinosa, E.J., de Carvalho, A.C.P.L.F.: SVMs for novel class detection in bioinformatics. In: Brazilian Workshop on Bioinformatics, pp. 81–88 (2004)

    Google Scholar 

  40. Alashwal, H.T., Deris, S., Othman, R.M.: One-class support vector machines for protein-protein interactions prediction. International Journal Biomedical Sciences 1(2), 120–127 (2006)

    Google Scholar 

  41. Sun, D., Tran, Q., Duan, H., Zhang, G.: A novel method for chinese spam detection based on one-class support vector machine. Journal of Information and Computational Science 2(1), 109–114 (2005)

    Google Scholar 

  42. Li, K., Huang, H., Tian, S., Xu, W.: Improving one-class svm for anomaly detection. In: Proceedings of the second international conference on machine learning and cybernetics, pp. 2–5 (November 2003)

    Google Scholar 

  43. Perdisci, R., Gu, G., Lee, W.: Using an ensemble of one-class svm classifiers to harden payload-based anomaly detection systems. In: Sixth International Conference on Data Mining, pp. 488–498 (2006)

    Google Scholar 

  44. Shin, H.J., Eom, D.W., Kim, S.S.: One-class support vector machines: an application in machine fault detection and classification. Computers and Industrial Engineering 48(2), 395–408 (2005)

    Article  Google Scholar 

  45. Wang, K., Stolfo, S.J.: One class training for masquerade detection. In: ICDM Workshop on Data Mining for Computer Security (2003)

    Google Scholar 

  46. Munroe, D.T., Madden, M.G.: Multi-class and single-class classification approaches to vehicle model recognition from images. In: Proc. AICS 2005: Irish Conference on Artificial Intelligence and Cognitive Science, Portstewart (2005)

    Google Scholar 

  47. Howley, T., Madden, M.G.: An evolutionary approach to automatic kernel construction. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 417–426. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khan, S.S., Madden, M.G. (2010). A Survey of Recent Trends in One Class Classification. In: Coyle, L., Freyne, J. (eds) Artificial Intelligence and Cognitive Science. AICS 2009. Lecture Notes in Computer Science(), vol 6206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17080-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17080-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17079-9

  • Online ISBN: 978-3-642-17080-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics