Nothing Special   »   [go: up one dir, main page]

Skip to main content

Carbon-Based Nanostructured Coatings on NiTi Shape Memory Alloy for Biomedical Applications

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6425))

Included in the following conference series:

Abstract

Here, we propose carbon-based nanostructured coatings for nickel-titanium (NiTi) shape memory alloys (SMAs) for biomedical applications. NiTi SMAs are well-known biomedical materials; however, the elution of toxic Ni ions into the body has prevented SMAs from expanding their applications, particularly in the complete implantation of SMAs for human artificial muscles. One possibility for the suppression of leaching ions is to create a barrier coating, for which diamond-like carbon (DLC) may be a candidate. Due to the strong internal stress derived from the mismatch of the thermal expansion coefficient, however, the adhesive strength of DLCs is very low. In this study, we focused on the incorporation of tungsten into a DLC in order to reduce the internal stress of the coating. First, we present the definition of appropriate fabrication conditions. Uniaxial tensile tests were then performed, and we evaluated the adhesive strength of the coatings. We then determined the conditions that support the fabrication of a coating with the strongest adhesive strength. Thereafter, we deposited the coating onto the SMA with shape memory effects and conducted self-bending tests. We observed that the cracks initiated parallel to the longer direction of the specimens, most likely a result of a boundary slip between the parent phases of the SMA. The removed fraction area of the coating was estimated at less than 1 % after 105 cycles, indicating the potential usage of tungsten-containing DLC coatings for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kahn, H., Huff, M.A., Heuer, A.H.: The TiNi shape-memory alloy and its applications for MEMS. Journal of Micromechanics and Microengineering 8, 213–221 (1998)

    Article  Google Scholar 

  2. Li, D.Y.: Exploration of TiNi shape memory alloy for potential application in a new area: Tribological engineering. Smart Materials and Structures 9(5), 717–726 (2000)

    Article  Google Scholar 

  3. Van Humbeeck, J.: Non-medical applications of shape memory alloys. Materials Science and Engineering A 273-275, 134–148 (1999)

    Article  Google Scholar 

  4. Fu, Y., Du, H., Huang, W., Zhang, S., Hu, M.: TiNi-based thin films in MEMS applications: A review. Sensors and Actuators, A: Physical 112(2-3), 395–408 (2004)

    Article  Google Scholar 

  5. Filip, P., Lausmaa, J., Musialek, J., Mazanec, K.: Structure and surface of TiNi human implants. Biomaterials 22(15), 2131–2138 (2001)

    Article  Google Scholar 

  6. Luo, Y., Okuyama, T., Takagi, T., Kamiyama, T., Nishi, K., Yambe, T.: Thermal control of shape memory alloy artificial anal sphincters for complete implantation. Smart Materials and Structures 14(15), 29–35 (2005)

    Article  Google Scholar 

  7. Robertson, J.: Diamond-like amorphous carbon. Material Science and Engineering R 37, 129–281 (2002)

    Article  Google Scholar 

  8. Shirakura, A., Nakaya, M., Koga, Y., Kodama, H., Hasebe, T., Suzuki, T.: Diamond-like carbon films for pet bottles and medical applications. Thin Solid Films 494(1-2), 84–91 (2006)

    Article  Google Scholar 

  9. Abbas, G.A., Roy, S.S., Papakonstantinou, P., McLaughlin, J.A.: Structural investigation and gas barrier performance of diamond-like carbon based films on polymer substrates. Carbon 43(2), 303–309 (2005)

    Article  Google Scholar 

  10. Kobayashi, S., Ohgoe, Y., Ozeki, K., Sato, K., Sumiya, T., Hirakuri, K., Aoki, H.: Diamond-like carbon coatings on orthodontic archwires. Diamond and Related Materials 14, 1094–1097 (2004)

    Article  Google Scholar 

  11. Wei, C., Yen, J.Y.: Effect of film thickness and interlayer on the adhesion strength of diamond like carbon films on different substrates. Diamond and Related Materials 16(4-7), 1325–1330 (2007)

    Article  Google Scholar 

  12. Ban, M., Hasegawa, T.: Internal stress reduction by incorporation of silicon in diamond-like carbon films. Surface and Coatings Technology 162(1), 1–5 (2003)

    Article  Google Scholar 

  13. Randeniya, L., Bendavid, A., Martin, P., Amin, M., Preston, E., Ismail, F.M., Coe, S.: Incorporation of Si and SiOx into diamond-like carbon films: Impact on surface properties and osteoblast adhesion. Acta Biomaterialia 5(5), 1791–1797 (2009)

    Article  Google Scholar 

  14. Choi, H., Choi, J.H., Lee, K.R., Ahn, J.P., Oh, K.: Structure and mechanical properties of Ag-incorporated DLC films prepared by a hybrid ion beam deposition system. Thin Solid Films 516(2-4), 248–251 (2007)

    Article  Google Scholar 

  15. Takagi, T., Takeno, T., Miki, H.: Metal-containing diamond-like carbon coating as a smart sensor. Materials Science Forum 638-642, 2103–2108 (2010)

    Article  Google Scholar 

  16. Takeno, T., Takagi, T., Bozhko, A., Shupegin, M., Sato, T.: Metal-containing diamond-like nanocomposite thin film for advanced temperature sensors. Materials Science Forum 475-479(III), 2079–2082 (2005)

    Article  Google Scholar 

  17. Takeno, T., Miki, H., Takagi, T., Onodera, H.: Electrically conductive properties of tungsten-containing diamond-like carbon films. Diamond and Related Materials 15(11-12), 1902–1905 (2006)

    Article  Google Scholar 

  18. Takeno, T., Sugawara, T., Miki, H., Takagi, T.: Deposition of DLC film with adhesive W-DLC layer on stainless steel and its tribological properties. Diamond and Related Materials 18(5-8), 1023–1027 (2009)

    Article  Google Scholar 

  19. Takeno, T., Shiota, H., Sugawara, T., Miki, H., Takagi, T.: Highly adherent tungsten-containing diamond-like carbon (W-DLC) coating on a NiTi shape memory alloy under 10% tensile strain. Diamond and Related Materials 18(2-3), 403–406 (2009)

    Article  Google Scholar 

  20. Takeno, T., Miki, H., Sugawara, T., Hoshi, Y., Takagi, T.: A DLC/W-DLC multilayered structure for strain sensing applications. Diamond and Related Materials 17(4-5), 713–716 (2008)

    Article  Google Scholar 

  21. Agrawal, D.C., Raj, R.: Measurement of the ultimate shear strength of a metal-ceramic interface. Acta Metallurgica 37(4), 1265–1270 (1989)

    Article  Google Scholar 

  22. Jeong, J.H., Kwon, D.: Evaluation of the adhesion strength in DLC film-coated systems using the film-cracking technique. Journal of Adhesion Science and Technology 12, 29–46 (1998)

    Article  Google Scholar 

  23. Liu, Y., Liu, Y., Van Humbeeck, J.: Two-way shape memory effect developed by martensite deformation in NiTi. Acta Materialia 47(1), 199–209 (1998)

    Article  Google Scholar 

  24. Liu, Y., Xie, Z., Van Humbeeck, J., Delaey, L.: Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys. Acta Materialia 46(12), 4325–4338 (1998)

    Article  Google Scholar 

  25. Xie, Z., Liu, Y., Van Humbeeck, J.: Microstructure of NiTi shape memory alloy due to tension-compression cyclic deformation. Acta Materialia 46(6), 1989–2000 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takeno, T., Shiota, H., Miki, H., Takagi, T., Luo, Y. (2010). Carbon-Based Nanostructured Coatings on NiTi Shape Memory Alloy for Biomedical Applications. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16587-0_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16587-0_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16586-3

  • Online ISBN: 978-3-642-16587-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics