Nothing Special   »   [go: up one dir, main page]

Skip to main content

Model Complexity Reduction of the Hand Musculoskeletal System in Tremulous Motion

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6425))

Included in the following conference series:

Abstract

Musculoskeletal modeling is an important step in understanding the behavior of a body part for postural and motion control. A simple but reliable model is preferred over more complex models. Most of the musculoskeletal models that have been developed so far involved a number of parameters that sometimes, some of the parameters are not easily identified or require difficult or expensive procedures. In this paper, a simplification strategy of the musculoskeletal model in 1 degree of freedom (DOF) hand tremulous motion is presented. The key idea of the complexity reduction mainly on the combination of the two inputs into single input using a sequence of signal processing. 3 models (first order, second order and second order with one zero) plus time delay are considered to represent the simplified musculoskeletal model. The best fit was represented by a second order plus time delay and one zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hof, A.L.: EMG and muscle force: An introduction. Human Movement Science 3, 119–153 (1984)

    Article  Google Scholar 

  2. Langenderfer, J., LaScalza, S., Mell, A., Carpenter, J.E., Kuhn, J.E., Hughes, R.E.: An EMG-driven model of the upper extremity and estimation of long head biceps force. Computers in Biology and Medicine 35, 25–39 (2005)

    Article  Google Scholar 

  3. Hof, A.L., Van den Berg, J.: EMG to force processing I: An electrical analogue of the hill muscle model. Journal of Biomechanics 14, 747–753, 755-758 (1981)

    Article  Google Scholar 

  4. Bestel, J., Clément, F., Sorine, M.: A Biomechanical Model of Muscle Contraction. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 1159–1161. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Dijkstra, S., Denier van der Gon, J.J., Blangé, T., Karemaker, J.M., Kramer, A.E.J.L.: A simplified sliding-filament muscle model for simulation purposes. Biological Cybernetics 12, 94–101 (1973)

    Google Scholar 

  6. Hayashibe, M., Guiraud, D., Poignet, P.: EMG-based neuromuscular modeling with full physiological dynamics and its comparison with modified hill model. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 6530–6533 (2009)

    Google Scholar 

  7. Bean, J.C., Chaffin, D.B., Schultz, A.B.: Biomechanical model calculation of muscle contraction forces: A double linear programming method. Journal of Biomechanics 21, 59–66 (1988)

    Article  Google Scholar 

  8. Wexler, A.S., Jun, D., Binder-Macleod, S.A.: A mathematical model that predicts skeletal muscle force. IEEE Transactions on Biomedical Engineering 44, 337–348 (1997)

    Article  Google Scholar 

  9. Terry, K.K.K., Arthur, F.T.M.: Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow. Journal of electromyography and kinesiology: official journal of the International Society of Electrophysiological Kinesiology 15, 12–26 (2005)

    Article  Google Scholar 

  10. David, G.L., Thor, F.B.: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Journal of Biomechanics 36, 765–776 (2003)

    Article  Google Scholar 

  11. Burkhard, P.R., Langston, J.W., Tetrud, J.W.: Voluntarily simulated tremor in normal subjects. Neurophysiologie Clinique/Clinical Neurophysiology 32, 119–126 (2002)

    Article  Google Scholar 

  12. Conforto, S., Mathieu, P., Schmid, M., Bibbo, D., Florestal, J.R., D’Alessio, T.: How much can we trust the electromechanical delay estimated by using electromyography? In: 28th Annual International Conference of the IEEE in Engineering in Medicine and Biology Society, EMBS 2006, pp. 1256–1259 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruwadi, Yap, S.C., Poignet, P., Tech, A.W. (2010). Model Complexity Reduction of the Hand Musculoskeletal System in Tremulous Motion. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16587-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16587-0_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16586-3

  • Online ISBN: 978-3-642-16587-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics