Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sparse Deep Belief Net for Handwritten Digits Classification

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6319))

  • 1999 Accesses

Abstract

It has been shown that the Deep Belief Network is good at modeling input distribution, and can be trained efficiently by the greedy layer-wise unsupervised learning. Hoglak Lee et al. (2008) introduced a sparse variant of the Deep Belief Network, which applied the Gaussian linear units to model the input data with a sparsity constraint. However, it takes much more weight updates to train the RBM (Restricted Boltzmann Machine) with Gaussian visible units, and the reconstruction error is much larger than training an RBM with binary visible units. Here, we propose another version of Sparse Deep Belief Net which applies the differentiable sparse coding method to train the first level of the deep network, and then train the higher layers with RBM .This hybrid model, combining the advantage of the Deep architecture and the sparse coding model, leads to state-of-the-art performance on the classification of handwritten digits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hinton, G.E., Osindero, S., Yee-Whye, T.: A Fast Learning Algorithm for Deep Belief Nets. Neural Computation 18, 1527–1544 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Olshausen, B.A.: Emergence of Simple-cell Receptive Field Properties by Learning a Sparse Code for Natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  3. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy Layer-Wise Training of Deep Networks. In: NIPS (2007)

    Google Scholar 

  4. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hinton, G.E.: Training Products of Experts by Minimizing Contrastive Divergence. Neural Computation 14, 1771–1800 (2002)

    Article  MATH  Google Scholar 

  6. Lee, H., Ekanadham, C., Ng, A.Y.: Sparse Deep Belief Net Model for Visual Area V2. In: NIPS (2008)

    Google Scholar 

  7. Ranzato, M., Poultney, C., Chopra, S., LeCun, Y.: Efficient Learning of Sparse Representations with an Energy-based Model. In: NIPS (2006)

    Google Scholar 

  8. Ranzato, M., Boureau, Y.-L., LeCun, Y.: Sparse Feature Learning for Deep Belief Networks. In: NIPS (2007)

    Google Scholar 

  9. Welling, M., Rosen Zvi, M., Hinton, G.E.: Exponential Family Harmoniums with an Application to Information Retrieval. In: NIPS (2005)

    Google Scholar 

  10. Teh, Y.W., Welling, M., Osindero, S., Hinton, G.E.: Energy-based Models for Sparse Overcomplete Representations. Journal of Machine Learning Research 4, 1235–1260 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient Sparse Coding Algorithm. In: NIPS (2006)

    Google Scholar 

  12. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught Learning: Transfer Learning from Unlabeled Data. In: ICML (2007)

    Google Scholar 

  13. Bradley, D.M., Bagnell, D.: Differentiable Sparse Coding. In: NIPS (2008)

    Google Scholar 

  14. Larochelle, H., Bengio, Y.: Classification using Discriminative Restricted Boltzmann Machine. In: ICML (2008)

    Google Scholar 

  15. Nair, V., Hinton, G.: Implicit Mixtures of Restricted Boltzmann Machine. In: NIPS (2008)

    Google Scholar 

  16. The MNIST database of handwritten digits, http://yann.lecun.com/exdb/mnist/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, J., Lu, H., Nan, D., Nengbin, C. (2010). Sparse Deep Belief Net for Handwritten Digits Classification. In: Wang, F.L., Deng, H., Gao, Y., Lei, J. (eds) Artificial Intelligence and Computational Intelligence. AICI 2010. Lecture Notes in Computer Science(), vol 6319. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16530-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16530-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16529-0

  • Online ISBN: 978-3-642-16530-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics