Abstract
Choosing the proper control parameters for DE is quite difficult because the best settings for the control parameters can be different for different functions. In this paper, the proposed self-adaptive method is an attempt to determine the values of control parameters F and CR. In this method, the adjusting of F and CR associates with fitness of individuals and the new values are Chaos random numbers. The experiment results show that this algorithm can attain better solutions than other algorithms for multimodal functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Storn, R., Price, K.: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimiz. 11, 341–359 (1997)
Liu, J., Lampinen, J.: On setting the control parameter of the differential evolution method. In: Proc. 8th Int. Conf. Soft Computing (MENDEL 2002), pp. 11–18 (2002)
Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Comput. Fusion Found. Methodol. Appl. 9(6), 448–462 (2005)
Teo, J.: Exploring dynamic self-adaptive populations in differential evolution. Soft Comput—Fusion Found. Methodol. Appl. 10(8), 673–686 (2006)
Maruo, M.H., Lopes, H.S., Delgado, M.R.: Self-adapting evolutionary parameters: Encoding aspects for combinatorial optimization problems. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 155–166. Springer, Heidelberg (2005)
Bäck, T.: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, New York (1996)
Bäck, T.: Adaptive business intelligence based on evolution strategies: some application examples of self-adaptive software. Inf. Sci. 148, 113–121 (2002)
Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of evolutionary computation. Institute of Physics Publishing and Oxford University Press, Oxford (1997)
Ali, M.M., Törn, A.: Population set-based global optimization algorithms: some modifications and numerical studies. Comput. Oper. Res. 31(10), 1703–1725 (2004)
Jiao, Y.-C., Dang, C., Leung, Y., Hao, Y.: A modification to the new version of the price’s algorithm for continuous global optimization problems. J. Global Optim. 36(4), 609–626 (2006)
Brest, J., Maučec, M.S.: Population size reduction for the differential evolution algorithm. App. Intell. (29), 228–247 (2008)
Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)
Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: The 2005 IEEE congress on evolutionary computation, CEC 2005, pp. 1785–1791 (2005)
Brest, J., Bošković, B., Greiner, S., Žumer, V., Sepesy Maučec, M.: Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput—Fusion Found. Methodol. Appl. 11(7), 617–629 (2007)
Mezura-Montes, E., Velázquez-Reyes, J., Coello Coello, C.A.: A comparative study of differential evolution variants for global optimization. In: GECCO, pp. 485–492 (2006)
Tvrdík, J.: Competitive differential evolution. In: MENDEL 2006, 12th International Conference on Soft Computing, pp. 7–12 (2006)
Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution: A practical approach to global optimization. Springer, New York (2005)
Heinx, O.P.: Chaos and Fractals. Springer, New York (1992)
Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)
Lee, C.Y., Yao, X.: Evolutionary programming using mutations based on the Lévy probability distribution. IEEE Trans. Evol. Comput. 8(1), 1–13 (2004)
Vesterstroem, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Proc. IEEE Congr. Evolutionary Computation, Portland, pp. 1980–1987 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, M., Guan, J., Cai, Z., Wang, L. (2010). Self-adapting Differential Evolution Algorithm with Chaos Random for Global Numerical Optimization. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds) Advances in Computation and Intelligence. ISICA 2010. Lecture Notes in Computer Science, vol 6382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16493-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-16493-4_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16492-7
Online ISBN: 978-3-642-16493-4
eBook Packages: Computer ScienceComputer Science (R0)