Nothing Special   »   [go: up one dir, main page]

Skip to main content

Self-adapting Differential Evolution Algorithm with Chaos Random for Global Numerical Optimization

  • Conference paper
Advances in Computation and Intelligence (ISICA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6382))

Included in the following conference series:

Abstract

Choosing the proper control parameters for DE is quite difficult because the best settings for the control parameters can be different for different functions. In this paper, the proposed self-adaptive method is an attempt to determine the values of control parameters F and CR. In this method, the adjusting of F and CR associates with fitness of individuals and the new values are Chaos random numbers. The experiment results show that this algorithm can attain better solutions than other algorithms for multimodal functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Storn, R., Price, K.: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimiz. 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Liu, J., Lampinen, J.: On setting the control parameter of the differential evolution method. In: Proc. 8th Int. Conf. Soft Computing (MENDEL 2002), pp. 11–18 (2002)

    Google Scholar 

  3. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Comput. Fusion Found. Methodol. Appl. 9(6), 448–462 (2005)

    MATH  Google Scholar 

  4. Teo, J.: Exploring dynamic self-adaptive populations in differential evolution. Soft Comput—Fusion Found. Methodol. Appl. 10(8), 673–686 (2006)

    Google Scholar 

  5. Maruo, M.H., Lopes, H.S., Delgado, M.R.: Self-adapting evolutionary parameters: Encoding aspects for combinatorial optimization problems. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 155–166. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Bäck, T.: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  7. Bäck, T.: Adaptive business intelligence based on evolution strategies: some application examples of self-adaptive software. Inf. Sci. 148, 113–121 (2002)

    Article  MATH  Google Scholar 

  8. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of evolutionary computation. Institute of Physics Publishing and Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  9. Ali, M.M., Törn, A.: Population set-based global optimization algorithms: some modifications and numerical studies. Comput. Oper. Res. 31(10), 1703–1725 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jiao, Y.-C., Dang, C., Leung, Y., Hao, Y.: A modification to the new version of the price’s algorithm for continuous global optimization problems. J. Global Optim. 36(4), 609–626 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brest, J., Maučec, M.S.: Population size reduction for the differential evolution algorithm. App. Intell. (29), 228–247 (2008)

    Google Scholar 

  12. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  13. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: The 2005 IEEE congress on evolutionary computation, CEC 2005, pp. 1785–1791 (2005)

    Google Scholar 

  14. Brest, J., Bošković, B., Greiner, S., Žumer, V., Sepesy Maučec, M.: Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput—Fusion Found. Methodol. Appl. 11(7), 617–629 (2007)

    MATH  Google Scholar 

  15. Mezura-Montes, E., Velázquez-Reyes, J., Coello Coello, C.A.: A comparative study of differential evolution variants for global optimization. In: GECCO, pp. 485–492 (2006)

    Google Scholar 

  16. Tvrdík, J.: Competitive differential evolution. In: MENDEL 2006, 12th International Conference on Soft Computing, pp. 7–12 (2006)

    Google Scholar 

  17. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution: A practical approach to global optimization. Springer, New York (2005)

    MATH  Google Scholar 

  18. Heinx, O.P.: Chaos and Fractals. Springer, New York (1992)

    Google Scholar 

  19. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  20. Lee, C.Y., Yao, X.: Evolutionary programming using mutations based on the Lévy probability distribution. IEEE Trans. Evol. Comput. 8(1), 1–13 (2004)

    Article  Google Scholar 

  21. Vesterstroem, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Proc. IEEE Congr. Evolutionary Computation, Portland, pp. 1980–1987 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, M., Guan, J., Cai, Z., Wang, L. (2010). Self-adapting Differential Evolution Algorithm with Chaos Random for Global Numerical Optimization. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds) Advances in Computation and Intelligence. ISICA 2010. Lecture Notes in Computer Science, vol 6382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16493-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16493-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16492-7

  • Online ISBN: 978-3-642-16493-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics