Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Method for Filtering Large Conceptual Schemas

  • Conference paper
Conceptual Modeling – ER 2010 (ER 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6412))

Included in the following conference series:

Abstract

We focus on the problem of filtering a fragment of the knowledge contained in a large conceptual schema. The problem appears in many information systems development activities in which people need to operate with a piece of the knowledge contained in that schema. We propose a new method in which a user focuses on one or more entity types of interest for her task at hand, and the method automatically filters the schema in order to obtain a set of entity and relationship types (and other knowledge) relevant to that task, taking into account the interest of each entity type with respect to the focus, computed from the measures of importance and closeness of entity types. The method has been implemented in a prototype tool, and it has been experimented with the schema of the osCommerce and the ResearchCyc ontology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  2. Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding quality in conceptual modeling. IEEE Software 11(2), 42–49 (1994)

    Article  Google Scholar 

  3. Conesa, J., Storey, V.C., Sugumaran, V.: Usability of upper level ontologies: The case of researchcyc. Data & Knowledge Engineering 69(4), 343–356 (2010)

    Article  Google Scholar 

  4. Tzitzikas, Y., Hainaut, J.L.: On the visualization of large-sized ontologies. In: AVI 2006, Working Conf. on Advanced Visual Interfaces, pp. 99–102. ACM, New York (2006)

    Google Scholar 

  5. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology visualization methods-a survey. ACM Computing Surveys 39(4), 10 (2007)

    Article  Google Scholar 

  6. Lanzenberger, M., Sampson, J., Rester, M.: Visualization in ontology tools. In: Intl. Conf. on Complex, Intelligent and Software Intensive Systems, pp. 705–711. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  7. Shoval, P., Danoch, R., Balabam, M.: Hierarchical entity-relationship diagrams: the model, method of creation and experimental evaluation. Requirements Engineering 9(4), 217–228 (2004)

    Article  Google Scholar 

  8. Rokach, L., Maimon, O.: Clustering methods. In: Data Mining and Knowledge Discovery Handbook, ch. 15, pp. 321–352. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Campbell, L.J., Halpin, T.A., Proper, H.A.: Conceptual schemas with abstractions making flat conceptual schemas more comprehensible. Data & Knowledge Engineering 20(1), 39–85 (1996)

    Article  MATH  Google Scholar 

  10. Kuflik, T., Boger, Z., Shoval, P.: Filtering search results using an optimal set of terms identified by an artificial neural network. Information Processing & Management 42(2), 469–483 (2006)

    Article  MATH  Google Scholar 

  11. Hanani, U., Shapira, B., Shoval, P.: Information filtering: Overview of issues, research and systems. User Modeling and User-Adapted Interaction 11(3), 203–259 (2001)

    Article  MATH  Google Scholar 

  12. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environment for validating UML and OCL. Science of Computer Programming (2007)

    Google Scholar 

  13. Tort, A., Olivé, A.: The osCommerce Conceptual Schema. Universitat Politècnica de Catalunya (2007), http://guifre.lsi.upc.edu/OSCommerce.pdf

  14. Lenat, D.B.: Cyc: a large-scale investment in knowledge infrastructure. Communications of the ACM 38(11), 33–38 (1995)

    Article  Google Scholar 

  15. Villegas, A., Olivé, A., Vilalta, J.: Improving the usability of hl7 information models by automatic filtering. In: IEEE 6th World Congress on Services (SERVICES), pp. 16–23 (2010), http://www.computer.org/portal/web/csdl/doi/10.1109/SERVICES.2010.32

  16. Villegas, A., Olivé, A.: On computing the importance of entity types in large conceptual schemas. In: Heuser, C.A., Pernul, G. (eds.) ER 2009 Workshops. LNCS, vol. 5833, pp. 22–32. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Castano, S., De Antonellis, V., Fugini, M.G., Pernici, B.: Conceptual schema analysis: techniques and applications. ACM Transactions on Database Systems 23(3), 286–333 (1998)

    Article  Google Scholar 

  18. Moody, D.L., Flitman, A.: A methodology for clustering entity relationship models-a human information processing approach. In: Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS, vol. 1728, pp. 114–130. Springer, Heidelberg (1999)

    Google Scholar 

  19. Tzitzikas, Y., Kotzinos, D., Theoharis, Y.: On ranking rdf schema elements (and its application in visualization). Journal of Universal Computer Science 13(12), 1854–1880 (2007)

    Google Scholar 

  20. Tzitzikas, Y., Hainaut, J.L.: How to tame a very large er diagram (using link analysis and force-directed drawing algorithms). In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 144–159. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Yu, C., Jagadish, H.V.: Schema summarization. In: VLDB 2006, 32nd Intl. Conf. on Very Large Data Bases, pp. 319–330 (2006)

    Google Scholar 

  22. Yang, X., Procopiuc, C.M., Srivastava, D.: Summarizing relational databases. In: VLDB 2009, 35th Intl. Conf. on Very Large Data Bases, pp. 634–645 (2009)

    Google Scholar 

  23. Conesa, J.: Pruning and refactoring ontologies in the development of conceptual schemas of information systems. PhD thesis, UPC (2008)

    Google Scholar 

  24. Lenat, D.B., Guha, R.V.: The evolution of cycl, the cyc representation language. ACM SIGART Bulletin 2(3), 84–87 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Villegas, A., Olivé, A. (2010). A Method for Filtering Large Conceptual Schemas. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds) Conceptual Modeling – ER 2010. ER 2010. Lecture Notes in Computer Science, vol 6412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16373-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16373-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16372-2

  • Online ISBN: 978-3-642-16373-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics