Abstract
The problem of dictatorship testing is often used a starting in constructing a PCP system. Samorodnitsky and Trevisan in STOC 2006 designed a dictatorship test that makes q queries and has soundness approximately O(q·2− q). However, their test has imperfect completeness. We describe some of the progress made in designing dictatorship tests with perfect completeness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)
Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM 45(1), 70–122 (1998)
Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs, and nonapproximability–towards tight results. SIAM Journal on Computing 27(3), 804–915 (1998)
Chen, V.: A hypergraph dictatorship test with perfect completeness. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX-RANDOM 2009. LNCS, vol. 5687, pp. 448–461. Springer, Heidelberg (2009)
Dinur, I., Mossel, E., Regev, O.: Conditional Hardness for Approximate Coloring. SIAM Journal on Computing 39(3), 843–873 (2009)
Engebretsen, L., Holmerin, J.: More Efficient Queries in PCPs for NP and Improved Approximation Hardness of Maximum CSP. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 194–205. Springer, Heidelberg (2005)
Gowers, W.T.: A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11(3), 465–588 (2001)
Guruswami, V., Lewin, D., Sudan, M., Trevisan, L.: A tight characterization of NP with 3 query PCPs. In: FOCS, pp. 8–17 (1998)
Håstad, J.: Some optimal inapproximability results. J. of ACM 48(4), 798–859 (2001)
Håstad, J., Khot, S.: Query Efficient PCPs with Perfect Completeness. Theory of Computing 1(7), 119–148 (2005)
Håstad, J., Wigderson, A.: Simple analysis of graph tests for linearity and PCP. Random Struct. Algorithms 22(2), 139–160 (2003)
Khot, S.: On the power of unique 2-prover 1-round games. In: STOC, pp. 767–775 (2002)
Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? SIAM Journal on Computing 37(1), 319–357 (2007)
Khot, S., Saket, R.: A 3-Query Non-Adaptive PCP with Perfect Completeness. In: CCC, pp. 159–169 (2006)
O’Donnell, R., Wu, Y.: 3-bit dictator testing: 1 vs. 5/8. In: SODA, pp. 365–373 (2009)
O’Donnell, R., Wu, Y.: Conditional Hardness for Satisfiable-3CSPs. In: STOC, pp. 493–502 (2009)
Parnas, M., Ron, D., Samorodnitsky, A.: Testing Basic Boolean Formulae. SIAM Journal on Discrete Mathematics 16(1), 20–46 (2002)
Raz, R.: A Parallel Repetition Theorem. SIAM Journal on Computing 27(3), 763–803 (1998)
Samorodnitsky, A.: Low-degree tests at large distances. In: STOC, pp. 506–515 (2007)
Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP with optimal amortized query complexity. In: STOC, pp. 191–199 (2000)
Samorodnitsky, A., Trevisan, L.: Gowers uniformity, influence of variables, and PCPs. SIAM Journal on Computing 39(1), 323–360 (2009)
Sudan, M., Trevisan, L.: Probabilistically checkable proofs with low amortized query complexity. In: FOCS, pp. 18–27 (1998)
Tamaki, S., Yoshida, Y.: A query efficient non-adaptive long code test with perfect completeness. ECCC, TR09-074 (2009)
Tao, T.: Structure and randomness in combinatorics. In: FOCS, pp. 3–15 (2007)
Trevisan, L.: Recycling queries in PCPs and in linearity tests (extended abstract). In: STOC, pp. 299–398 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Chen, V. (2010). Query-Efficient Dictatorship Testing with Perfect Completeness. In: Goldreich, O. (eds) Property Testing. Lecture Notes in Computer Science, vol 6390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16367-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-16367-8_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16366-1
Online ISBN: 978-3-642-16367-8
eBook Packages: Computer ScienceComputer Science (R0)