Nothing Special   »   [go: up one dir, main page]

Skip to main content

Query-Efficient Dictatorship Testing with Perfect Completeness

  • Chapter
Property Testing

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6390))

Abstract

The problem of dictatorship testing is often used a starting in constructing a PCP system. Samorodnitsky and Trevisan in STOC 2006 designed a dictatorship test that makes q queries and has soundness approximately O(q·2− q). However, their test has imperfect completeness. We describe some of the progress made in designing dictatorship tests with perfect completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM 45(1), 70–122 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs, and nonapproximability–towards tight results. SIAM Journal on Computing 27(3), 804–915 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, V.: A hypergraph dictatorship test with perfect completeness. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX-RANDOM 2009. LNCS, vol. 5687, pp. 448–461. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Dinur, I., Mossel, E., Regev, O.: Conditional Hardness for Approximate Coloring. SIAM Journal on Computing 39(3), 843–873 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Engebretsen, L., Holmerin, J.: More Efficient Queries in PCPs for NP and Improved Approximation Hardness of Maximum CSP. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 194–205. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Gowers, W.T.: A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11(3), 465–588 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guruswami, V., Lewin, D., Sudan, M., Trevisan, L.: A tight characterization of NP with 3 query PCPs. In: FOCS, pp. 8–17 (1998)

    Google Scholar 

  9. Håstad, J.: Some optimal inapproximability results. J. of ACM 48(4), 798–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Håstad, J., Khot, S.: Query Efficient PCPs with Perfect Completeness. Theory of Computing 1(7), 119–148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Håstad, J., Wigderson, A.: Simple analysis of graph tests for linearity and PCP. Random Struct. Algorithms 22(2), 139–160 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khot, S.: On the power of unique 2-prover 1-round games. In: STOC, pp. 767–775 (2002)

    Google Scholar 

  13. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? SIAM Journal on Computing 37(1), 319–357 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Khot, S., Saket, R.: A 3-Query Non-Adaptive PCP with Perfect Completeness. In: CCC, pp. 159–169 (2006)

    Google Scholar 

  15. O’Donnell, R., Wu, Y.: 3-bit dictator testing: 1 vs. 5/8. In: SODA, pp. 365–373 (2009)

    Google Scholar 

  16. O’Donnell, R., Wu, Y.: Conditional Hardness for Satisfiable-3CSPs. In: STOC, pp. 493–502 (2009)

    Google Scholar 

  17. Parnas, M., Ron, D., Samorodnitsky, A.: Testing Basic Boolean Formulae. SIAM Journal on Discrete Mathematics 16(1), 20–46 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Raz, R.: A Parallel Repetition Theorem. SIAM Journal on Computing 27(3), 763–803 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Samorodnitsky, A.: Low-degree tests at large distances. In: STOC, pp. 506–515 (2007)

    Google Scholar 

  20. Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP with optimal amortized query complexity. In: STOC, pp. 191–199 (2000)

    Google Scholar 

  21. Samorodnitsky, A., Trevisan, L.: Gowers uniformity, influence of variables, and PCPs. SIAM Journal on Computing 39(1), 323–360 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sudan, M., Trevisan, L.: Probabilistically checkable proofs with low amortized query complexity. In: FOCS, pp. 18–27 (1998)

    Google Scholar 

  23. Tamaki, S., Yoshida, Y.: A query efficient non-adaptive long code test with perfect completeness. ECCC, TR09-074 (2009)

    Google Scholar 

  24. Tao, T.: Structure and randomness in combinatorics. In: FOCS, pp. 3–15 (2007)

    Google Scholar 

  25. Trevisan, L.: Recycling queries in PCPs and in linearity tests (extended abstract). In: STOC, pp. 299–398 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, V. (2010). Query-Efficient Dictatorship Testing with Perfect Completeness. In: Goldreich, O. (eds) Property Testing. Lecture Notes in Computer Science, vol 6390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16367-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16367-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16366-1

  • Online ISBN: 978-3-642-16367-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics