Nothing Special   »   [go: up one dir, main page]

Skip to main content

A DAA Scheme Requiring Less TPM Resources

  • Conference paper
Information Security and Cryptology (Inscrypt 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6151))

Included in the following conference series:

Abstract

Direct anonymous attestation (DAA) is a special digital signature primitive, which provides a balance between signer authentication and privacy. One of the most interesting properties that makes this primitive attractive in practice is its construction of signers. The signer role of DAA is split between two entities, a principal signer (a trusted platform module (TPM)) with limited computational capability and an assistant signer (a computer platform into which the TPM is embedded) with more computational power but less security tolerance. Our first contribution in this paper is a new DAA scheme that requires very few TPM resources. This new scheme has better performance than the existing DAA schemes and is provable secure based on the q-SDH problem and DDH problem under the random oracle model. Our second contribution is a modification of the DAA security model defined in [12] to cover the property of non-frameability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Backes, M., Maffei, M., Unruh, D.: Zero knowledge in the applied Pi–calculus and automated verification of the direct anonymous attestation protocol. In: IEEE Symposium on Security and Privacy – SSP 2008, pp. 202–215 (2008)

    Google Scholar 

  3. Balfe, S., Lakhani, A.D., Paterson, K.G.: Securing peer-to-peer networks using trusted computing. In: Mitchell (ed.) Trusted Computing, ch. 10, pp. 271–298. IEEE, London (2005)

    Google Scholar 

  4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: The 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)

    Chapter  Google Scholar 

  6. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Boneh, D., Boyen, X.: Sort signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Google Scholar 

  9. Boyd, C., Pavlovski, C.: Attacking and repairing batch verification schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 58–71. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: The 11th ACM Conference on Computer and Communications Security, pp. 132–145. ACM Press, New York (2004)

    Chapter  Google Scholar 

  11. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation in context. In: Mitchell (ed.) Trusted Computing, ch. 5, pp. 143–174. IEEE, London (2005)

    Google Scholar 

  12. Brickell, E., Chen, L., Li, J.: Simplified security notions for direct anonymous attestation and a concrete scheme from pairings. Int. Journal of Information Security 8, 315–330 (2009)

    Article  Google Scholar 

  13. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from bilinear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 166–178. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Brickell, E., Li, J.: Enhanced privacy ID: A direct anonymous attestation scheme with enhanced revocation capabilities. In: The 6th ACM Workshop on Privacy in the Electronic Society – WPES 2007, pp. 21–30. ACM Press, New York (2007)

    Chapter  Google Scholar 

  15. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing. In: Cryptology ePrint Archive. Report 2009/095, http://eprint.iacr.org/2009/095

  16. Canard, S., Traore, J.: List signature schemes and application to electronic voting. Presented in International Workshop on Coding and Cryptography 2003 (2003); See also the Journal Version of This Paper by Canard, S., Schoenmakers, B., Stam, M., Traore, J.: List signature schemes. Discrete Applied Mathematics 154(2), 189–201 (2006)

    Google Scholar 

  17. Chen, L.: A DAA scheme requiring less TPM resources. In: Cryptology ePrint Archive. Report 2010/008, http://eprint.iacr.org/2010/008

  18. Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement protocols from pairings. Int. Journal of Information Security 6, 213–242 (2007)

    Article  Google Scholar 

  19. Chen, L., Li, J.: A note on the Chen-Morrissey-Smart Direct Anonymous Attestation scheme (preprint)

    Google Scholar 

  20. Chen, L., Morrissey, P., Smart, N.P.: Pairings in trusted computing. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 1–17. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Chen, L., Morrissey, P., Smart, N.P.: On proofs of security of DAA schemes. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 156–175. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Chen, L., Morrissey, P., Smart, N.P.: DAA: Fixing the pairing based protocols. In: Cryptology ePrint Archive. Report 2009/198, http://eprint.iacr.org/2009/198

  23. Chen, X., Feng, D.: Direct anonymous attestation for next generation TPM. Journal of Computers 3(12), 43–50 (2008)

    MathSciNet  Google Scholar 

  24. Delerablee, C., Pointcheval, D.: Dynamic fully anonymous short group signatures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer, Heidelberg (2006), http://www.di.ens.fr/users/pointche/Documents/Papers/2006_vietcrypt.pdf for a corrected version of this paper

    Chapter  Google Scholar 

  25. Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156, 3113–3121 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ge, H., Tate, S.R.: A Direct anonymous attestation scheme for embedded devices. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 16–30. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  27. ISO/IEC 11889:2009 Information technology – Security techniques – Trusted Platform Module

    Google Scholar 

  28. ISO/IEC 14888-3 Information technology – Security techniques – Digital signatures with appendix – Part 3: Discrete logarithm based mechanisms

    Google Scholar 

  29. Leung, A., Chen, L., Mitchell, C.J.: On a possible privacy flaw in direct anonymous attestation (DAA). In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 179–190. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a prime order subgroup. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 249–263. Springer, Heidelberg (1997)

    Google Scholar 

  31. Lysyanskaya, A., Rivest, R., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  32. Pashalidis, A., Mitchell, C.J.: Single sign-on using TCG-conformant platforms. In: Mitchell (ed.) Trusted Computing, ch. 6, pp. 175–193. IEEE, London (2005)

    Google Scholar 

  33. Rudolph, C.: Covert identity information in direct anonymous attestation (DAA). In: The 22nd IFIP TC-11 International Information Security Conference – SEC 2007 (2007)

    Google Scholar 

  34. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

    Google Scholar 

  35. Smyth, B., Chen, L., Ryan, M.: Direct Anonymous Attestation (DAA): Ensuring privacy with corrupt administrators. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 218–231. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  36. Trusted Computing Group. TCG TPM specification 1.2 (2003), http://www.trustedcomputinggroup.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, L. (2010). A DAA Scheme Requiring Less TPM Resources. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds) Information Security and Cryptology. Inscrypt 2009. Lecture Notes in Computer Science, vol 6151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16342-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16342-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16341-8

  • Online ISBN: 978-3-642-16342-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics