Abstract
Induction proofs often fail because the stated theorem is noninductive, in which case the user must strengthen the theorem or prove auxiliary properties before performing the induction step. (Counter)model finders are useful for detecting non-theorems, but they will not find any counterexamples for noninductive theorems. We explain how to apply a well-known concept from first-order logic, nonstandard models, to the detection of noninductive invariants. Our work was done in the context of the proof assistant Isabelle/HOL and the counterexample generator Nitpick.
Research supported by the DFG grant Ni 491/11-1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahrendt, W.: Deductive search for errors in free data type specifications using model generation. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 211–225. Springer, Heidelberg (2002)
Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: Cuellar, J., Liu, Z. (eds.) SEFM 2004, pp. 230–239. IEEE C.S., Los Alamitos (2004)
Berghofer, S., Wenzel, M.: Inductive datatypes in HOL—lessons learned in formal-logic engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 19–36. Springer, Heidelberg (1999)
Blanchette, J.C.: Relational analysis of (co)inductive predicates (co)inductive datatypes, and (co)recursive functions. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp. 117–134. Springer, Heidelberg (2010)
Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)
Caferra, R., Leitsch, A., Peltier, N.: Automated Model Building. Applied Logic, vol. 31. Springer, Heidelberg (2004)
Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)
Claessen, K., Svensson, H.: Finding counter examples in induction proofs. In: Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 48–65. Springer, Heidelberg (2008)
Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press, Cambridge (1993)
Klein, G., Nipkow, T., Paulson, L.: The archive of formal proofs, http://afp.sf.net/
Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Auto. Reas. 40(1), 35–60 (2008)
Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J. Applied Logic 7(1), 41–57 (2009)
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)
Owre, S., Shankar, N.: Abstract datatypes in PVS. Technical report, SRI (1993)
Skolem, T.: Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschließlich Zahlenvariablen. Fundam. Math. 23, 150–161 (1934)
Stark, J., Ireland, A.: Invariant discovery via failed proof attempts. In: Flener, P. (ed.) LOPSTR 1998. LNCS, vol. 1559, pp. 271–288. Springer, Heidelberg (1999)
Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)
Wenzel, M., Wiedijk, F.: A comparison of the mathematical proof languages Mizar and Isar. J. Auto. Reas. 29(3–4), 389–411 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blanchette, J.C., Claessen, K. (2010). Generating Counterexamples for Structural Inductions by Exploiting Nonstandard Models. In: Fermüller, C.G., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2010. Lecture Notes in Computer Science, vol 6397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16242-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-16242-8_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16241-1
Online ISBN: 978-3-642-16242-8
eBook Packages: Computer ScienceComputer Science (R0)