Nothing Special   »   [go: up one dir, main page]

Skip to main content

Knowledge Reduction in Random Incomplete Information Systems via Evidence Theory

  • Conference paper
Rough Set and Knowledge Technology (RSKT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6401))

Included in the following conference series:

Abstract

Knowledge reduction is one of the main problems in the study of rough set theory. This paper deals with knowledge reduction in random incomplete information systems based on Dempster-Shafer theory of evidence. The concepts of random belief reducts and random plausibility reducts in random incomplete information systems are introduced. The relationships among the random belief reduct, the random plausibility reduct, and the classical reduct are examined. It is proved that, in a random incomplete information system, an attribute set is a random belief reduct if and only if it is a classical reduct, and a random plausibility consistent set must be a consistent set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beynon, M.: Reducts within the variable precision rough sets model: A further investigation. European Journal of Operational Research 134, 592–605 (2001)

    Article  MATH  Google Scholar 

  2. Kryszkiewicz, M.: Rough set approach to incomplete information systems. Information Sciences 112, 39–49 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kryszkiewicz, M.: Rules in incomplete information systems. Information Sciences 113, 271–292 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Leung, Y., Wu, W.-Z., Zhang, W.-X.: Knowledge acquisition in incomplete information systems: A rough set approach. European Journal of Operational Research 168, 164–180 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Li, D.Y., Zhang, B., Leung, Y.: On knowledge reduction in inconsistent decision information systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12, 651–672 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lingras, P.J., Yao, Y.Y.: Data mining using extensions of the rough set model. Journal of the American Society for Information Science 49, 415–422 (1998)

    Article  Google Scholar 

  7. Mi, J.-S., Wu, W.-Z., Zhang, W.-X.: Approaches to knowledge reductions based on variable precision rough sets model. Information Sciences 159, 255–272 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Nguyen, H.S., Slezak, D.: Approximation reducts and association rules correspondence and complexity results. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 137–145. Springer, Heidelberg (1999)

    Google Scholar 

  9. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston (1991)

    MATH  Google Scholar 

  10. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  11. Skowron, A.: The rough sets theory and evidence theory. Fundamenta Informaticae 13, 245–262 (1990)

    MATH  MathSciNet  Google Scholar 

  12. Slezak, D.: Searching for dynamic reducts in inconsistent decision tables. In: Proceedings of IPMU 1998, Paris, France, vol. 2, pp. 1362–1369 (1998)

    Google Scholar 

  13. Wu, W.-Z.: Attribute reduction based on evidence theory in incomplete decision systems. Information Sciences 178, 1355–1371 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wu, W.-Z., Leung, Y., Zhang, W.-X.: Connections between rough set theory and Dempster-Shafer theory of evidence. International Journal of General Systems 31, 405–430 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wu, W.-Z., Leung, Y., Mi, J.-S.: On generalized fuzzy belief functions in infinite spaces. IEEE Transactions on Fuzzy Systems 17, 385–397 (2009)

    Article  Google Scholar 

  16. Wu, W.-Z., Mi, J.-S.: Knowledge reduction in incomplete information systems based on Dempster-Shafer theory of evidence. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 254–261. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Wu, W.-Z., Zhang, M., Li, H.-Z., Mi, J.-S.: Knowledge reduction in random information systems via Dempster-Shafer theory of evidence. Information Sciences 174, 143–164 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yao, Y.Y.: Interpretations of belief functions in the theory of rough sets. Information Sciences 104, 81–106 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yao, Y.Y.: Generalized rough set models. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery: 1. Methodology and Applications, pp. 286–318. Physica, Heidelberg (1998)

    Google Scholar 

  20. Zhang, M., Xu, L.D., Zhang, W.-X., Li, H.-Z.: A rough set approach to knowledge reduction based on inclusion degree and evidence reasoning theory. Expert Systems 20, 298–304 (2003)

    Article  Google Scholar 

  21. Zhang, W.-X., Mi, J.-S., Wu, W.-Z.: Approaches to knowledge reductions in inconsistent systems. International Journal of Intelligent Systems 18, 989–1000 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, WZ. (2010). Knowledge Reduction in Random Incomplete Information Systems via Evidence Theory. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds) Rough Set and Knowledge Technology. RSKT 2010. Lecture Notes in Computer Science(), vol 6401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16248-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16248-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16247-3

  • Online ISBN: 978-3-642-16248-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics