Nothing Special   »   [go: up one dir, main page]

Skip to main content

Weight Reduction of Electromagnet in Magnetic Levitation System for Contactless Delivery Application

  • Chapter
Computational Methods for the Innovative Design of Electrical Devices

Part of the book series: Studies in Computational Intelligence ((SCI,volume 327))

  • 1211 Accesses

Abstract

This paper presents lightweight optimum design of electromagnet in magnetic levitation system. This paper deals with the possibility of using the response surface methodology (RSM) for optimization of an electromagnet with a higher number of the design variables. 2D and 3D magnetostatic analysis of electromagnet is performed by using ANSYS. The most effective design variables were extracted by pareto chart. The most desired set is determined and the influence of each design variables on the objective function can be obtained. This paper procedure is validated by the comparison between experimental and calculation result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D’Arrigo, A., Rufer, A.: Integrated electromagnetic levitation and guidance system for the swissmetro project. In: MAGLEV 2000, pp. 263–268. Rio de Janeiro, Brazil (2000)

    Google Scholar 

  2. Tzeng, Y.K., Wang, T.C.: Optimal design of the electromagnetic levitation with permanent and electro magnets. IEEE Trans. Magn. 30(6), 4731–4733 (1994)

    Article  Google Scholar 

  3. Kim, Y.J., Shin, P.S., Kang, D.H., Cho, Y.H.: Design and analysis of electromagnetic system in a magnetically levitated vehicle, KOMAG-01. IEEE Trans. Magn. 28(5), 3321–3323 (1992)

    Article  Google Scholar 

  4. Onuki, T., Toda, Y.P.: Optimal design of hybrid magnet in Maglev system with both permanent and electromagnets. IEEE Trans. Magn. 29(2), 1783–1786 (1993)

    Article  Google Scholar 

  5. Hong, D.K., Woo, B.C., Chang, J.H., Kang, D.H.: Optimum design of TFLM with constraints for weight reduction using characteristic function. IEEE Trans. Magn. 43(4), 1613–1616 (2007)

    Article  Google Scholar 

  6. Hong, D.K., Choi, S.C., Ahn, C.W.: Robust optimization design of overhead crane with constraint using the characteristic functions. International Journal of Precision Engineering and Manufacturing 7(2), 12–17 (2006)

    Google Scholar 

  7. Kim, J.M., Lee, S.H., Choi, Y.K.: Decentralized H∞ control of Maglev systems. In: Proc. of IECON Conf., Paris, France, pp. 418–423 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Honga, DK., Woo, BC., Koo, DH., Lee, KC. (2010). Weight Reduction of Electromagnet in Magnetic Levitation System for Contactless Delivery Application. In: Wiak, S., Napieralska-Juszczak, E. (eds) Computational Methods for the Innovative Design of Electrical Devices. Studies in Computational Intelligence, vol 327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16225-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16225-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16224-4

  • Online ISBN: 978-3-642-16225-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics