Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computing Stable Outcomes in Hedonic Games

  • Conference paper
Algorithmic Game Theory (SAGT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6386))

Included in the following conference series:

Abstract

We study the computational complexity of finding stable outcomes in symmetric additively-separable hedonic games. These coalition formation games are specified by an undirected edge-weighted graph: nodes are players, an outcome of the game is a partition of the nodes into coalitions, and the utility of a node is the sum of incident edge weights in the same coalition. We consider several natural stability requirements defined in the economics literature. For all of them the existence of a stable outcome is guaranteed by a potential function argument, so local improvements will converge to a stable outcome and all these problems are in PLS. The different stability requirements correspond to different local search neighbourhoods. For different neighbourhood structures, our findings comprise positive results in the form of polynomial-time algorithms for finding stable outcomes, and negative (PLS-completeness) results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aarts, E.H.L., Lenstra, J.K.: Local Search in Combinatorial Optimization. Wiley Interscience, Hoboken (1997)

    MATH  Google Scholar 

  2. Balcan, M.-F., Blum, A., Mansour, Y.: Improved equilibria via public service advertising. In: SODA, pp. 728–737 (2009)

    Google Scholar 

  3. Ballester, C.: NP-completeness in hedonic games. Games and Economic Behavior 49(1), 1–30 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhalgat, A., Chakraborty, T., Khanna, S.: Approximating pure Nash equilibrium in cut, party affiliation and satisfiability games. In: ACM Conference in Electronic Commerce (EC), pp. 132–146 (2010)

    Google Scholar 

  5. Bogomolnaia, A., Jackson, M.O.: The stability of hedonic coalition structures. Games and Economic Behavior 38(2), 201–230 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burani, N., Zwicker, W.S.: Coalition formation games with separable preferences. Mathematical Social Sciences 45(1), 27–52 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cechlárová, K.: Stable partition problem. In: Encyclopedia of Algorithms. Springer, Heidelberg (2008)

    Google Scholar 

  8. Christodoulou, G., Mirrokni, V.S., Sidiropoulos, A.: Convergence and approximation in potential games. In: STACS, pp. 349–360 (2006)

    Google Scholar 

  9. Dreze, J.H., Greenberg, J.: Hedonic coalitions: Optimality and stability. Econometrica 48(4), 987–1003 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elkind, E., Wooldridge, M.: Hedonic coalition nets. In: Int. Conference on Autonomous Agents and Multiagent Systems, pp. 417–424 (2009)

    Google Scholar 

  11. Greenberg, J.: Coalition structures. In: Aumann, R.J., Hart, S. (eds.) Handbook of Game Theory with Economic Applications II. Elsevier, Amsterdam (1994)

    Google Scholar 

  12. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? Journal of Computer and System Sciences 37, 79–100 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Monien, B., Tscheuschner, T.: On the power of nodes of degree four in the local max-cut problem. In: 7th International Conference on Algorithms and Complexity, CIAC (2010)

    Google Scholar 

  14. Monien, B., Dumrauf, D., Tscheuschner, T.: Local search: Simple, successful, but sometimes sluggish. In: 37th International Colloquium on Automata, Languages and Programming, ICALP (2010)

    Google Scholar 

  15. Orlin, J.B., Punnen, A.P., Schulz, A.S.: Approximate local search in combinatorial optimization. SIAM Journal of Computing 33(5), 1201–1214 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schäffer, A.A., Yannakakis, M.: Simple Local Search Problems that are Hard to Solve. SIAM Journal of Computing 20(1), 56–87 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sipser, M.: Introduction to the Theory of Computation. Thomson (2006)

    Google Scholar 

  18. Sung, S.C., Dimitrov, D.: Computational complexity in additive hedonic games. European Journal of Operational Research 203(3), 635–639 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tscheuschner, T.: The local max-cut problem is PLS-complete even on graphs with maximum degree five (2010), http://arxiv.org/abs/1004.5329

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gairing, M., Savani, R. (2010). Computing Stable Outcomes in Hedonic Games. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds) Algorithmic Game Theory. SAGT 2010. Lecture Notes in Computer Science, vol 6386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16170-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16170-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16169-8

  • Online ISBN: 978-3-642-16170-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics