Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Rate of Convergence of Fictitious Play

  • Conference paper
Algorithmic Game Theory (SAGT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6386))

Included in the following conference series:

Abstract

Fictitious play is a simple learning algorithm for strategic games that proceeds in rounds. In each round, the players play a best response to a mixed strategy that is given by the empirical frequencies of actions played in previous rounds. There is a close relationship between fictitious play and the Nash equilibria of a game: if the empirical frequencies of fictitious play converge to a strategy profile, this strategy profile is a Nash equilibrium. While fictitious play does not converge in general, it is known to do so for certain restricted classes of games, such as constant-sum games, non-degenerate 2×n games, and potential games. We study the rate of convergence of fictitious play and show that, in all the classes of games mentioned above, fictitious play may require an exponential number of rounds (in the size of the representation of the game) before some equilibrium action is eventually played. In particular, we show the above statement for symmetric constant-sum win-lose-tie games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellman, R.: On a new iterative algorithm for finding the solutions of games and linear programming problems. In: Research Memorandum P-473, The RAND Corporation (1953)

    Google Scholar 

  2. Berger, U.: Fictitious play in 2×n games. Journal of Economic Theory 120, 139–154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berger, U.: Brown’s original fictitious play. Journal of Economic Theory 135, 572–578 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger, U.: Learning in games with strategic complementarities revisited. Journal of Economic Theory 143, 292–301 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berger, U.: The convergence of fictitious play in games with strategic complementarities: A comment. MPRA Paper No. 20241, Munich Personal RePEc Archive (2009)

    Google Scholar 

  6. Brandt, F., Fischer, F.: On the hardness and existence of quasi-strict equilibria. In: Monien, B., Schroeder, U.-P. (eds.) SAGT 2008. LNCS, vol. 4997, pp. 291–302. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Brown, G.W.: Iterative solutions of games by fictitious play. In: Koopmans, T.C. (ed.) Activity Analysis of Production and Allocation, pp. 374–376. John Wiley and Sons, Inc., Chichester (1951)

    Google Scholar 

  8. Conitzer, V.: Approximation guarantees for fictitious play. In: Proc. of 47th Annual Allerton Conference on Communication, Control and Computing (2009)

    Google Scholar 

  9. Conitzer, V., Sandholm, T.: AWESOME: A general multiagent learning algorithm that converges in self-play and learns a best response against stationary opponents. Machine Learning 67(1-2), 23–43 (2007)

    Article  Google Scholar 

  10. Dantzig, G.B.: A proof of the equivalence of the programming problem and the game problem. In: Koopmans, T.C. (ed.) Activity Analysis of Production and Allocation, pp. 330–335. John Wiley & Sons Inc., Chichester (1951)

    Google Scholar 

  11. Fudenberg, D., Levine, D.: Universal consistency and cautious fictitious play. Journal of Economic Dynamics and Control 19, 1065–1089 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ganzfried, S., Sandholm, T.: Computing an approximate jam/fold equilibrium for 3-player no-limit texas hold’em tournaments. In: Proc. of 7th AAMAS Conference, pp. 919–925 (2008)

    Google Scholar 

  13. Gjerstad, S.: The rate of convergence of continuous fictitious play. Journal of Economic Theory 7, 161–178 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hahn, S.: The convergence of fictitious play in 3×3 games with strategic complementarities. Economic Letters 64, 57–60 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hannan, J.: Approximation to Bayes risk in repeated plays. In: Dresher, M., Tucker, A.W., Wolfe, P. (eds.) Contributions to the Theory of Games, vol. 3, pp. 97–139. Princeton University Press, Princeton (1957)

    Google Scholar 

  16. Luce, R.D., Raiffa, H.: Games and Decisions: Introduction and Critical Survey. John Wiley & Sons Inc., Chichester (1957)

    MATH  Google Scholar 

  17. Miyasawa, K.: On the convergence of the learning process in a 2×2 nonzero sum two-person game. In: Research Memorandum 33, Econometric Research Program. Princeton University, Princeton (1961)

    Google Scholar 

  18. Monderer, D., Sela, A.: A 2×2 game without the fictitious play property. Games and Economic Behavior 14, 144–148 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14(1), 124–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Monderer, D., Shapley, L.S.: Fictitious play property for games with identical interests. Journal of Economic Theory 68, 258–265 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nachbar, J.H.: “Evolutionary” selection dynamics in games: Convergence and limit properties. International Journal of Game Theory 19, 59–89 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Powers, R., Shoham, Y.: New criteria and a new algorithm for learning in multi-agent systems. In: Advances in Neural Information Processing Systems, vol. 17, pp. 1089–1096. MIT Press, Cambridge (2004)

    Google Scholar 

  23. Rabinovich, Z., Gerding, E., Polukarov, M., Jennings, N.R.: Generalised fictitious play for a continuum of anonymous players. In: Proc. of 21st IJCAI, pp. 245–250 (2009)

    Google Scholar 

  24. Robinson, J.: An iterative method of solving a game. Annals of Mathematics 54(2), 296–301 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shapley, L.: Some topics in two-person games. In: Dresher, M., Shapley, L.S., Tucker, A.W. (eds.) Advances in Game Theory. Annals of Mathematics Studies, vol. 52, pp. 1–29. Princeton University Press, Princeton (1964)

    Google Scholar 

  26. von Neumann, J.: Zur Theorie der Gesellschaftspiele. Mathematische Annalen 100, 295–320 (1928)

    Article  MathSciNet  Google Scholar 

  27. von Neumann, J.: A numerical method to determine optimum strategy. Naval Research Logistics Quarterly 1(2), 109–115 (1954)

    Article  MathSciNet  Google Scholar 

  28. Zhu, W., Wurman, P.R.: Structural leverage and fictitious play in sequential auctions. In: Proc. of 18th AAAI Conference, pp. 385–390 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brandt, F., Fischer, F., Harrenstein, P. (2010). On the Rate of Convergence of Fictitious Play. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds) Algorithmic Game Theory. SAGT 2010. Lecture Notes in Computer Science, vol 6386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16170-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16170-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16169-8

  • Online ISBN: 978-3-642-16170-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics