Nothing Special   »   [go: up one dir, main page]

Skip to main content

Common SpatioTemporal Pattern Analysis

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6365))

Abstract

In this work we present a method for the estimation of a rank-one pattern living in two heterogeneous spaces, when observed through a mixture in multiple observation sets. Using a well chosen representation for an observed set of second order tensors (matrices), a singular value decomposition of the set structure yields an accurate estimate under some widely acceptable conditions. The method performs a completely algebraic estimation in both heterogeneous spaces without the need for heuristic parameters. Contrary to existing methods, neither independence in one of the spaces, nor joint decorrelation in both of the heterogeneous spaces is required. In addition, because the method is not variance based in the input space, it has the critical advantage of being applicable with low signal-to-noise ratios. This makes this method an excellent candidate ,e.g., for the direct estimation of the spatio-temporal P300 pattern in passive exogenous brain computer interface paradigms. For these applications it is often sufficient to consider quasi-decorrelation in the temporal space only, while we do not want to impose a similar constraint in the spatial domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hoke, M., Ross, B., Wickesberg, R., Lütkenhöner, B.: Weighted averaging theory and application to electric response audiometry. Electroencephalography and Clinical Neurophysiology 57(5), 484–489 (1984)

    Article  Google Scholar 

  2. Davila, C.E., Mobin, M.S.: Weighted averaging of evoked potentials. IEEE Transactions on Biomedical Engineering 39(4), 338–345 (1992)

    Article  Google Scholar 

  3. Lütkenhöner, B., Hoke, M., Pantev, C.: Possibilities and limitations of weighted averaging. Biological Cybernetics 52(6), 40–416 (1985)

    Article  Google Scholar 

  4. Chapman, R.M., McCrary, J.W.: EP component identification and measurement by principal component analysis. Brain and Cognition 27, 288–310 (1995)

    Article  Google Scholar 

  5. Kayser, J., Tenke, C.E.: Optimizing PCA methodology for ERP component identification and measurement: theoretical rationale and empirical evaluation. Clinical Neurophysiology 114, 2307–2325 (2003)

    Article  Google Scholar 

  6. Comon, P.: Independent component analysis, a new concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  7. Makeig, S., Westerfield, M., Jung, T.-P., Covington, J., Townsend, J., Sejnowski, T.J.: Independent components of the late positive response complex in a visual spatial attention task. Journal of Neuroscience 19, 2665–2680 (1999)

    Google Scholar 

  8. Li, R., Keil, A., Principe, J.C.: Single-trial P300 estimation with a spatiotemporal filtering method. Journal of Neuroscience Methods 177, 488–496 (2009)

    Article  Google Scholar 

  9. Iyer, D., Zouridakis, G.: Single-trial evoked potential estimation: Comparison between independent component analysis and wavelet denoising. Clinical Neurophysiology 118, 495–504 (2007)

    Article  Google Scholar 

  10. Wang, Y., Berg, P., Scherg, M.: Common spatial subspace decomposition applied to analysis of brain responses under multiple task conditions: a simulation study. Clinical Neurophysiology 110, 604–614 (1999)

    Article  Google Scholar 

  11. Krusienski, D.J.: A method for visualizing independent spatio-temporal patterns of brain activity. EURASIP Journal on Advances in Signal Processing 2009 (2009)

    Google Scholar 

  12. Laub, A.J.: Matrix Analysis for Scientists and Engineers. Society for Industrial and Applied Mathematics (2005)

    Google Scholar 

  13. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Phlypo, R., Jrad, N., Rivet, B., Congedo, M. (2010). Common SpatioTemporal Pattern Analysis. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2010. Lecture Notes in Computer Science, vol 6365. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15995-4_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15995-4_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15994-7

  • Online ISBN: 978-3-642-15995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics