Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Performance Index for ICA: Properties, Computation and Asymptotic Analysis

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6365))

Abstract

In the independent component (IC) model it is assumed that the components of the observed p-variate random vector x are linear combinations of the components of a latent p-vector z such that the p components of z are independent. Then x = Ωz where Ω is a full-rank p×p mixing matrix. In the independent component analysis (ICA) the aim is to estimate an unmixing matrix Γ such that Γx has independent components. The comparison of the performances of different unmixing matrix estimates \(\hat{\Gamma}\) in the simulations is then difficult as the estimates are for different population quantities Γ. In this paper we suggest a new natural performance index which finds the shortest distance (using Frobenius norm) between the identity matrix and the set of matrices equivalent to the gain matrix \(\hat{\Gamma} \Omega\). The index is shown to possess several nice properties, and it is easy and fast to compute. Also, the limiting behavior of the index as the sample size approaches infinity can be easily derived if the limiting behavior of the estimate \(\hat{\Gamma}\) is known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amari, S.I., Cichocki, A., Yang, H.H.: A new learning algorithm for blind source separation. Advances in Neural Information Processing Systems 8, 757–763 (1996)

    Google Scholar 

  2. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEEE Proceedings-F 140, 362–370 (1993)

    Google Scholar 

  3. Cardoso, J.F.: Source separation using higher moments. In: Proceedings of IEEE international conference on acustics, speech and signal processing, pp. 2109–2112 (1989)

    Google Scholar 

  4. Cichocki, A., Amari, S.I.: Adaptive Blind Signal and Image Processing. John Wiley & Sons, Chichester (2006)

    Google Scholar 

  5. Douglas, S.C.: Fixed-point algorithms for the blind separation of arbitrary complex-valued non-gaussian signal mixtures. EURASIP Journal on Advances in Signal Processing 1, 83–83 (2007)

    Google Scholar 

  6. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New York (2001)

    Book  Google Scholar 

  7. Ilmonen, P., Nevalainen, J., Oja, H.: Characteristics of multivariate distributions and the invariant coordinate system (2010) (submitted)

    Google Scholar 

  8. Moreau, E., Macchi, O.: A one stage self-adaptive algorithm for source separation. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Adelaide, Australia, pp. 49–52 (1994)

    Google Scholar 

  9. Nordhausen, K., Oja, H., Ollila, E.: Robust independent component analysis based on two scatter matrices. Austrian Journal of Statistics 37, 91–100 (2008)

    Google Scholar 

  10. Oja, H., Sirkiä, S., Eriksson, J.: Scatter matrices and independent component analysis. Austrian Journal of Statistics 35, 175–189 (2006)

    Google Scholar 

  11. Ollila, E.: The deflation-based FastICA estimator: statistical analysis revisited. IEEE Transactions in Signal Processing 58, 1527–1541 (2010)

    Google Scholar 

  12. Ollila, E., Oja, H., Koivunen, V.: Complex-valued ICA based on a pair of generalized covariance matrices. CSDA 52, 3789–3805 (2008)

    MATH  MathSciNet  Google Scholar 

  13. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice Hall, Englewood Cliffs (1982)

    MATH  Google Scholar 

  14. Theis, F.J., Lang, E.W., Puntonet, C.G.: A geometric algorithm for overcomplete linear ICA. Neurocomputing 56, 381–398 (2004)

    Article  Google Scholar 

  15. Tyler, D.E., Critchley, F., Dümbgen, L., Oja, H.: Invariant coordinate selection. Journal of Royal Statistical Society, Series B 71, 549–592 (2009)

    Article  Google Scholar 

  16. Yeredor, A.: On Optimal Selection of Correlation Matrices for Matrix-Pencil-Based Separation. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds.) ICA 2009. LNCS, vol. 5441, pp. 187–194. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ilmonen, P., Nordhausen, K., Oja, H., Ollila, E. (2010). A New Performance Index for ICA: Properties, Computation and Asymptotic Analysis. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2010. Lecture Notes in Computer Science, vol 6365. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15995-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15995-4_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15994-7

  • Online ISBN: 978-3-642-15995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics