Nothing Special   »   [go: up one dir, main page]

Skip to main content

On-Line Multi-view Forests for Tracking

  • Conference paper
Pattern Recognition (DAGM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6376))

Included in the following conference series:

Abstract

A successful approach to tracking is to on-line learn discriminative classifiers for the target objects. Although these tracking-by-detection approaches are usually fast and accurate they easily drift in case of putative and self-enforced wrong updates. Recent work has shown that classifier-based trackers can be significantly stabilized by applying semi-supervised learning methods instead of supervised ones. In this paper, we propose a novel on-line multi-view learning algorithm based on random forests. The main idea of our approach is to incorporate multiview learning inside random forests and update each tree with individual label estimates for the unlabeled data. Our method is fast, easy to implement, benefits from parallel computing architectures and inherently exploits multiple views for learning from unlabeled data. In the tracking experiments, we outperform the state-of-the-art methods based on boosting and random forests.

This work has been supported by the Austrian FFG project MobiTrick (825840) and Outlier (820923) under the FIT-IT program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. (2006)

    Google Scholar 

  2. Avidan, S.: Ensemble tracking. PAMI 29(2), 261–271 (2007)

    Google Scholar 

  3. Grabner, H., Bischof, H.: On-line boosting and vision. In: CVPR (2006)

    Google Scholar 

  4. Matthews, I., Ishikawa, T., Baker, S.: The template update problem. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 810–815 (2004)

    Article  Google Scholar 

  5. Grabner, H., Leistner, C., Bischof, H.: On-line semi-supervised boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: CVPR (2009)

    Google Scholar 

  7. Liu, R., Cheng, J., Lu, H.: A robust boosting tracker with minimum error bound in a co-training framework. In: ICCV (2009)

    Google Scholar 

  8. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proc. COLT, pp. 92–100 (1998)

    Google Scholar 

  9. Goldman, S., Zhou, Y.: Enhancing supervised learning with unlabeled data. In: ICML (2000)

    Google Scholar 

  10. Zhou, Z.H., Li, M.: Tri-training exploiting unlabeled data using three classifiers. IEEE Transactions on Knowledge and Data Engineering 17(11), 1529–1541 (2005)

    Article  Google Scholar 

  11. Breiman, L.: Random forests. Machine Learning (2001)

    Google Scholar 

  12. Saffari, A., Leistner, C., Godec, M., Santner, J., Bischof, H.: On-line random forests. In: OLCV (2009)

    Google Scholar 

  13. Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. In: CVPR (2006)

    Google Scholar 

  14. Zhu, X., Goldberg, A.B.: Introduction to Semi-Supervised Learning, 3rd edn. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool (January 2009)

    Google Scholar 

  15. Abney, S.: Semi-Supervised Learning for Computational Linguistics, 1st edn. Computer Science and Data Analysis. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  16. Balcan, M.F., Blum, A.: Yang, K.: Co-training and expansion: Towards bridging theory and practice. In: NIPS. MIT Press, Cambridge (2004)

    Google Scholar 

  17. Levin, A., Viola, P., Freund, Y.: Unsupervised improvement of visual detectors using co-training. In: Proc. IEEE ICCV, vol. I, pp. 626–633 (2003)

    Google Scholar 

  18. Javed, O., Ali, S., Shah, M.: Online detection and classification of moving objects using progressively improving detectors. In: CVPR

    Google Scholar 

  19. Tang, F., Brennan, S., Zao, Q., Tao, W.: Co-tracking using semi-supervised support machines. In: ICCV (2007)

    Google Scholar 

  20. Yu, Q., Dinh, T.B., Medioni, G.: Online tracking and reacquisition co-trained generative and discriminative trackers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 678–691. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Geman, Y.A.D.: Shape quantization and recognition with randomized trees. Neural Computation (1996)

    Google Scholar 

  22. Breiman, L.: Bagging predictors. Machine Learning 2(24), 49–64 (1996)

    Google Scholar 

  23. Caruana, R., Karampatziakis, N., Yessenalina, A.: An empirical evaluation of supervised learning in high dimensions. In: ICML (2008)

    Google Scholar 

  24. Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using randomized clustering forests. In: NIPS, pp. 985–992 (2006)

    Google Scholar 

  25. Sharp, T.: Implementing decision trees and forests on a gpu. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 595–608. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Gall, J., Lempinsky, V.: Class-specific hough forests for object detection. In: CVPR (2009)

    Google Scholar 

  27. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image catergorization and segmentation. In: CVPR (2008)

    Google Scholar 

  28. Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: ICCV (2007)

    Google Scholar 

  29. Pakkanen, J., Iivarinen, J., Oja, E.: The evolving tree—a novel self-organizing network for data analysis. Neural Process. Lett. 20(3), 199–211 (2004)

    Article  Google Scholar 

  30. Leistner, C., Saffari, A., Santner, J., Bischof, H.: Semi-supervised random forests. In: ICCV (2009)

    Google Scholar 

  31. Ross, D., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. In: IJCV (2008)

    Google Scholar 

  32. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR (2006)

    Google Scholar 

  33. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object class challenge 2007. In: VOC (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leistner, C., Godec, M., Saffari, A., Bischof, H. (2010). On-Line Multi-view Forests for Tracking. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15986-2_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15985-5

  • Online ISBN: 978-3-642-15986-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics