Abstract
A successful approach to tracking is to on-line learn discriminative classifiers for the target objects. Although these tracking-by-detection approaches are usually fast and accurate they easily drift in case of putative and self-enforced wrong updates. Recent work has shown that classifier-based trackers can be significantly stabilized by applying semi-supervised learning methods instead of supervised ones. In this paper, we propose a novel on-line multi-view learning algorithm based on random forests. The main idea of our approach is to incorporate multiview learning inside random forests and update each tree with individual label estimates for the unlabeled data. Our method is fast, easy to implement, benefits from parallel computing architectures and inherently exploits multiple views for learning from unlabeled data. In the tracking experiments, we outperform the state-of-the-art methods based on boosting and random forests.
This work has been supported by the Austrian FFG project MobiTrick (825840) and Outlier (820923) under the FIT-IT program.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. (2006)
Avidan, S.: Ensemble tracking. PAMI 29(2), 261–271 (2007)
Grabner, H., Bischof, H.: On-line boosting and vision. In: CVPR (2006)
Matthews, I., Ishikawa, T., Baker, S.: The template update problem. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 810–815 (2004)
Grabner, H., Leistner, C., Bischof, H.: On-line semi-supervised boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)
Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: CVPR (2009)
Liu, R., Cheng, J., Lu, H.: A robust boosting tracker with minimum error bound in a co-training framework. In: ICCV (2009)
Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proc. COLT, pp. 92–100 (1998)
Goldman, S., Zhou, Y.: Enhancing supervised learning with unlabeled data. In: ICML (2000)
Zhou, Z.H., Li, M.: Tri-training exploiting unlabeled data using three classifiers. IEEE Transactions on Knowledge and Data Engineering 17(11), 1529–1541 (2005)
Breiman, L.: Random forests. Machine Learning (2001)
Saffari, A., Leistner, C., Godec, M., Santner, J., Bischof, H.: On-line random forests. In: OLCV (2009)
Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. In: CVPR (2006)
Zhu, X., Goldberg, A.B.: Introduction to Semi-Supervised Learning, 3rd edn. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool (January 2009)
Abney, S.: Semi-Supervised Learning for Computational Linguistics, 1st edn. Computer Science and Data Analysis. Chapman & Hall/CRC, Boca Raton (2007)
Balcan, M.F., Blum, A.: Yang, K.: Co-training and expansion: Towards bridging theory and practice. In: NIPS. MIT Press, Cambridge (2004)
Levin, A., Viola, P., Freund, Y.: Unsupervised improvement of visual detectors using co-training. In: Proc. IEEE ICCV, vol. I, pp. 626–633 (2003)
Javed, O., Ali, S., Shah, M.: Online detection and classification of moving objects using progressively improving detectors. In: CVPR
Tang, F., Brennan, S., Zao, Q., Tao, W.: Co-tracking using semi-supervised support machines. In: ICCV (2007)
Yu, Q., Dinh, T.B., Medioni, G.: Online tracking and reacquisition co-trained generative and discriminative trackers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 678–691. Springer, Heidelberg (2008)
Geman, Y.A.D.: Shape quantization and recognition with randomized trees. Neural Computation (1996)
Breiman, L.: Bagging predictors. Machine Learning 2(24), 49–64 (1996)
Caruana, R., Karampatziakis, N., Yessenalina, A.: An empirical evaluation of supervised learning in high dimensions. In: ICML (2008)
Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using randomized clustering forests. In: NIPS, pp. 985–992 (2006)
Sharp, T.: Implementing decision trees and forests on a gpu. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 595–608. Springer, Heidelberg (2008)
Gall, J., Lempinsky, V.: Class-specific hough forests for object detection. In: CVPR (2009)
Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image catergorization and segmentation. In: CVPR (2008)
Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: ICCV (2007)
Pakkanen, J., Iivarinen, J., Oja, E.: The evolving tree—a novel self-organizing network for data analysis. Neural Process. Lett. 20(3), 199–211 (2004)
Leistner, C., Saffari, A., Santner, J., Bischof, H.: Semi-supervised random forests. In: ICCV (2009)
Ross, D., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. In: IJCV (2008)
Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR (2006)
Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object class challenge 2007. In: VOC (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leistner, C., Godec, M., Saffari, A., Bischof, H. (2010). On-Line Multi-view Forests for Tracking. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_50
Download citation
DOI: https://doi.org/10.1007/978-3-642-15986-2_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15985-5
Online ISBN: 978-3-642-15986-2
eBook Packages: Computer ScienceComputer Science (R0)