Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Curvature Estimator for Digital Curves and Images

  • Conference paper
Pattern Recognition (DAGM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6376))

Included in the following conference series:

Abstract

We propose a novel curvature estimation algorithm which is capable of estimating the curvature of digital curves and two-dimensional curved image structures. The algorithm is based on the conformal projection of the curve or image signal to the two-sphere. Due to the geometric structure of the embedded signal the curvature may be estimated in terms of first order partial derivatives in ℝ3. This structure allows us to obtain the curvature by just convolving the projected signal with the appropriate kernels. We show that the method performs an implicit plane fitting by convolving the projected signals with the derivative kernels. Since the algorithm is based on convolutions its implementation is straightforward for digital curves as well as images. We compare the proposed method with differential geometric curvature estimators. It turns out that the novel estimator is as accurate as the standard differential geometric methods in synthetic as well as real and noise perturbed environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hermann, S., Klette, R.: Global Curvature Estimation for Corner Detection. Technical report, The University of Auckland, New Zealand (2005)

    Google Scholar 

  2. Williams, D.J., Shah, M.: A Fast Algorithm for Active Contours and Curvature Estimation. CVGIP: Image Underst. 55(1), 14–26 (1992)

    Article  MATH  Google Scholar 

  3. Morse, B., Schwartzwald, D.: Isophote-based Interpolation. In: International Conference on Image Processing, vol. 3, p. 227 (1998)

    Google Scholar 

  4. Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, Accurate and Convergent Tangent Estimation on Digital Contours. Image Vision Comput. 25(10), 1572–1587 (2007)

    Article  Google Scholar 

  5. Coeurjolly, D., Miguet, S., Tougne, L.: Discrete Curvature Based on Osculating Circle Estimation. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 303–312. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Hermann, S., Klette, R.: Multigrid Analysis of Curvature Estimators. In: Proc. Image Vision Computing, New Zealand, pp. 108–112 (2003)

    Google Scholar 

  7. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  8. Wietzke, L., Fleischmann, O., Sommer, G.: 2D Image Analysis by Generalized Hilbert Transforms in Conformal Space. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 638–649. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  10. Needham, T.: Visual Complex Analysis. Oxford University Press, USA (1999)

    Google Scholar 

  11. Zayed, A.: Handbook of Function and Generalized Function Transformations. CRC, Boca Raton (1996)

    MATH  Google Scholar 

  12. Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier Science Inc., New York (1996)

    MATH  Google Scholar 

  13. Lindeberg, T.: Scale-space Theory in Computer Vision. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  14. Felsberg, M., Sommer, G.: The Monogenic Scale-space: A Unifying Approach to Phase-based Image Processing in Scale-space. Journal of Mathematical Imaging and vision 21(1), 5–26 (2004)

    Article  MathSciNet  Google Scholar 

  15. Gander, W., Golub, G.H., Strebel, R.: Least-Squares Fitting of Circles and Ellipses. BIT (4), 558–578 (1994)

    Google Scholar 

  16. Coope, I.D.: Circle Fitting by Linear and Nonlinear Least Squares. Journal of Optimization Theory and Applications 76(2), 381–388 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Romeny, B.M.: Geometry-Driven Diffusion in Computer Vision. Kluwer Academic Publishers, Norwell (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fleischmann, O., Wietzke, L., Sommer, G. (2010). A Novel Curvature Estimator for Digital Curves and Images. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15986-2_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15985-5

  • Online ISBN: 978-3-642-15986-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics