Nothing Special   »   [go: up one dir, main page]

Skip to main content

Privacy-Preserving Multi-Objective Evolutionary Algorithms

  • Conference paper
Parallel Problem Solving from Nature, PPSN XI (PPSN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6239))

Included in the following conference series:

Abstract

Existing privacy-preserving evolutionary algorithms are limited to specific problems securing only cost function evaluation. This lack of functionality and security prevents their use for many security sensitive business optimization problems, such as our use case in collaborative supply chain management. We present a technique to construct privacy-preserving algorithms that address multi-objective problems and secure the entire algorithm including survivor selection. We improve performance over Yao’s protocol for privacy-preserving algorithms and achieve solution quality only slightly inferior to the multi-objective evolutionary algorithm NSGA-II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Han, S., Ng, W.: Privacy-preserving genetic algorithms for rule discovery. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 407–417. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Sakuma, J., Kobayashi, S.: A genetic algorithm for privacy preserving combinatorial optimization. In: Proc. GECCO 2007, pp. 1372–1379. ACM, New York (2007)

    Chapter  Google Scholar 

  3. Yao, A.C.: Protocols for secure computations. In: Proc. IEEE FOCS 1982, Washington, DC, USA, pp. 160–164. IEEE Computer Society, Los Alamitos (1982)

    Google Scholar 

  4. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, Springer, Heidelberg (2000)

    Google Scholar 

  5. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  6. Diponegoro, A., Sarker, B.: Finite horizon planning for a production system with permitted shortage and fixed-interval deliveries. Computers and Operations Research 33(8), 2387–2404 (2006)

    Article  MATH  Google Scholar 

  7. Funke, D., Kerschbaum, F.: Privacy-preserving multi-objective evolutionary algorithms. Cryptology ePrint Archive, Report 2010/326 (2010)

    Google Scholar 

  8. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - a secure two-party computation system. In: Proc. USENIX Security 2004, pp. 287–302. USENIX Association, Berkeley (2004)

    Google Scholar 

  9. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Google Scholar 

  10. Karnin, E., Greene, J., Hellman, M.: On secret sharing systems. IEEE Transactions on Information Theory 29(1), 35–41 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2(3), 221–248 (1994)

    Article  Google Scholar 

  12. Coello Coello, C., Lamont, G., van Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  13. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the Spring Joint Computer Conference, April 30-May 2, pp. 307–314. ACM, New York (1968)

    Google Scholar 

  14. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. Technical Report TIK-Report 103, ETH Zurich, Zurich, Switzerland (2001)

    Google Scholar 

  15. Knowles, J., Corne, D.: Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)

    Article  Google Scholar 

  16. Kerschbaum, F.: Practical privacy-preserving benchmarking. In: Proc. IFIP SEC 2008, Boston, MA, USA, pp. 17–31. Springer, Heidelberg (2008)

    Google Scholar 

  17. Kerschbaum, F., Dahlmeier, D., Schröpfer, A., Biswas, D.: On the practical importance of communication complexity for secure multi-party computation protocols. In: Proc. ACM SAC 2009, pp. 2008–2015. ACM, New York (2009)

    Chapter  Google Scholar 

  18. Kerschbaum, F., Oertel, N., Weiss Ferreira Chaves, L.: Privacy-preserving computation of benchmarks on item-level data using RFID. In: Proc. ACM WiSec 2010, pp. 105–110. ACM, New York (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Funke, D., Kerschbaum, F. (2010). Privacy-Preserving Multi-Objective Evolutionary Algorithms. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15871-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15871-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15870-4

  • Online ISBN: 978-3-642-15871-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics