Abstract
Existing privacy-preserving evolutionary algorithms are limited to specific problems securing only cost function evaluation. This lack of functionality and security prevents their use for many security sensitive business optimization problems, such as our use case in collaborative supply chain management. We present a technique to construct privacy-preserving algorithms that address multi-objective problems and secure the entire algorithm including survivor selection. We improve performance over Yao’s protocol for privacy-preserving algorithms and achieve solution quality only slightly inferior to the multi-objective evolutionary algorithm NSGA-II.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Han, S., Ng, W.: Privacy-preserving genetic algorithms for rule discovery. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 407–417. Springer, Heidelberg (2007)
Sakuma, J., Kobayashi, S.: A genetic algorithm for privacy preserving combinatorial optimization. In: Proc. GECCO 2007, pp. 1372–1379. ACM, New York (2007)
Yao, A.C.: Protocols for secure computations. In: Proc. IEEE FOCS 1982, Washington, DC, USA, pp. 160–164. IEEE Computer Society, Los Alamitos (1982)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, Springer, Heidelberg (2000)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)
Diponegoro, A., Sarker, B.: Finite horizon planning for a production system with permitted shortage and fixed-interval deliveries. Computers and Operations Research 33(8), 2387–2404 (2006)
Funke, D., Kerschbaum, F.: Privacy-preserving multi-objective evolutionary algorithms. Cryptology ePrint Archive, Report 2010/326 (2010)
Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - a secure two-party computation system. In: Proc. USENIX Security 2004, pp. 287–302. USENIX Association, Berkeley (2004)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)
Karnin, E., Greene, J., Hellman, M.: On secret sharing systems. IEEE Transactions on Information Theory 29(1), 35–41 (1983)
Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2(3), 221–248 (1994)
Coello Coello, C., Lamont, G., van Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, Heidelberg (2007)
Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the Spring Joint Computer Conference, April 30-May 2, pp. 307–314. ACM, New York (1968)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. Technical Report TIK-Report 103, ETH Zurich, Zurich, Switzerland (2001)
Knowles, J., Corne, D.: Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)
Kerschbaum, F.: Practical privacy-preserving benchmarking. In: Proc. IFIP SEC 2008, Boston, MA, USA, pp. 17–31. Springer, Heidelberg (2008)
Kerschbaum, F., Dahlmeier, D., Schröpfer, A., Biswas, D.: On the practical importance of communication complexity for secure multi-party computation protocols. In: Proc. ACM SAC 2009, pp. 2008–2015. ACM, New York (2009)
Kerschbaum, F., Oertel, N., Weiss Ferreira Chaves, L.: Privacy-preserving computation of benchmarks on item-level data using RFID. In: Proc. ACM WiSec 2010, pp. 105–110. ACM, New York (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Funke, D., Kerschbaum, F. (2010). Privacy-Preserving Multi-Objective Evolutionary Algorithms. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15871-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-15871-1_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15870-4
Online ISBN: 978-3-642-15871-1
eBook Packages: Computer ScienceComputer Science (R0)