Abstract
Genetic programming is applied to the problem of bioreactor control. This highly nonlinear problem has previously been suggested as one of the challenging benchmarks to explore new ideas for building automatic controllers. It is shown that the derived control law is successful in a number of test cases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, C.W., Miller III, W.T.: Challenging control problems. In: Miller, S., Werbos (eds.) Neural Networks for Control, MIT Press, Cambridge (1990)
Astrom, K.J., Wittenmark, B.: Adaptive Control, 1st edn. Addison-Wesley, Reading (1989)
Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1992)
Narendra, K.S., Annaswamy, A.M.: Stable Adaptive Systems. Prentice-Hall, Englewood Cliffs (1989)
Ungar, L.H.: A bioreactor benchmark for adaptive network-based process control. In: Miller, S., Werbos (eds.) Neural Networks for Control. MIT Press, Cambridge (1990)
White, D.A., Sofge, D.A. (eds.): Handbook of Intelligent Control. Van Nostrand Reinhold, New York (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dracopoulos, D.C., Piccoli, R. (2010). Bioreactor Control by Genetic Programming. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15871-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-15871-1_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15870-4
Online ISBN: 978-3-642-15871-1
eBook Packages: Computer ScienceComputer Science (R0)