Abstract
The hypervolume indicator is widely used to guide the search and to evaluate the performance of evolutionary multi-objective optimization algorithms. It measures the volume of the dominated portion of the objective space which is considered to give a good approximation of the Pareto front. There is surprisingly little theoretically known about the quality of this approximation. We examine the multiplicative approximation ratio achieved by two-dimensional sets maximizing the hypervolume indicator and prove that it deviates significantly from the optimal approximation ratio. This provable gap is even exponential in the ratio between the largest and the smallest value of the front. We also examine the additive approximation ratio of the hypervolume indicator and prove that it achieves the optimal additive approximation ratio apart from a small factor ≤ n/(n − 2), where n is the size of the population. Hence the hypervolume indicator can be used to achieve a very good additive but not a good multiplicative approximation of a Pareto front.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Investigating and exploiting the bias of the weighted hypervolume to articulate user preferences. In: Proc. 11th Annual Conference on Genetic and Evolutionary Computation (GECCO 2009), pp. 563–570 (2009)
Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point. In: Proc. 10th International Workshop on Foundations of Genetic Algorithms (FOGA 2009), pp. 87–102 (2009)
Beume, N., Naujoks, B., Emmerich, M.T.M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181, 1653–1669 (2007)
Bringmann, K., Friedrich, T.: The maximum hypervolume set yields near-optimal approximation. In: Proc. 12th Annual Conference on Genetic and Evolutionary Computation (GECCO 2010), pp. 511–518 (2010)
Deb, K., Mohan, M., Mishra, S.: Evaluating the ε–domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions. Evolutionary Computation 13, 501–525 (2005)
Emmerich, M.T.M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)
Friedrich, T., Horoba, C., Neumann, F.: Multiplicative approximations and the hypervolume indicator. In: Proc. 11th Annual Conference on Genetic and Evolutionary Computation (GECCO 2009), pp. 571–578 (2009)
Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evolutionary Computation 15, 1–28 (2007)
Knowles, J.D., Corne, D.: Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Trans. Evolutionary Computation 7, 100–116 (2003)
Knowles, J.D., Corne, D.W., Fleischer, M.: Bounded archiving using the Lebesgue measure. In: Proc. IEEE Congress on Evolutionary Computation (CEC 2003), vol. 4, pp. 2490–2497.
Kumar, R., Banerjee, N.: Running time analysis of a multiobjective evolutionary algorithm on simple and hard problems. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 112–131. Springer, Heidelberg (2005)
Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evolutionary Computation 10(3), 263–282 (2002)
Lizarraga-Lizarraga, G., Hernandez-Aguirre, A., Botello-Rionda, S.: G-metric: an m-ary quality indicator for the evaluation of non-dominated sets. In: Proc. 10th Annual Conference on Genetic and Evolutionary Computation (GECCO 2008), pp. 665–672 (2008)
Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Proc. 41st Annual Symposium on Foundations of Computer Science (FOCS 2000), pp. 86–92 (2000)
Rudin, W.: Real and complex analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)
Suttorp, T., Hansen, N., Igel, C.: Efficient covariance matrix update for variable metric evolution strategies. Machine Learning 75, 167–197 (2009)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evolutionary Computation 3, 257–271 (1999)
Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bringmann, K., Friedrich, T. (2010). Tight Bounds for the Approximation Ratio of the Hypervolume Indicator. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_61
Download citation
DOI: https://doi.org/10.1007/978-3-642-15844-5_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15843-8
Online ISBN: 978-3-642-15844-5
eBook Packages: Computer ScienceComputer Science (R0)