Nothing Special   »   [go: up one dir, main page]

Skip to main content

Tight Bounds for the Approximation Ratio of the Hypervolume Indicator

  • Conference paper
Parallel Problem Solving from Nature, PPSN XI (PPSN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6238))

Included in the following conference series:

Abstract

The hypervolume indicator is widely used to guide the search and to evaluate the performance of evolutionary multi-objective optimization algorithms. It measures the volume of the dominated portion of the objective space which is considered to give a good approximation of the Pareto front. There is surprisingly little theoretically known about the quality of this approximation. We examine the multiplicative approximation ratio achieved by two-dimensional sets maximizing the hypervolume indicator and prove that it deviates significantly from the optimal approximation ratio. This provable gap is even exponential in the ratio between the largest and the smallest value of the front. We also examine the additive approximation ratio of the hypervolume indicator and prove that it achieves the optimal additive approximation ratio apart from a small factor ≤ n/(n − 2), where n is the size of the population. Hence the hypervolume indicator can be used to achieve a very good additive but not a good multiplicative approximation of a Pareto front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Investigating and exploiting the bias of the weighted hypervolume to articulate user preferences. In: Proc. 11th Annual Conference on Genetic and Evolutionary Computation (GECCO 2009), pp. 563–570 (2009)

    Google Scholar 

  2. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point. In: Proc. 10th International Workshop on Foundations of Genetic Algorithms (FOGA 2009), pp. 87–102 (2009)

    Google Scholar 

  3. Beume, N., Naujoks, B., Emmerich, M.T.M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181, 1653–1669 (2007)

    Article  MATH  Google Scholar 

  4. Bringmann, K., Friedrich, T.: The maximum hypervolume set yields near-optimal approximation. In: Proc. 12th Annual Conference on Genetic and Evolutionary Computation (GECCO 2010), pp. 511–518 (2010)

    Google Scholar 

  5. Deb, K., Mohan, M., Mishra, S.: Evaluating the ε–domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions. Evolutionary Computation 13, 501–525 (2005)

    Article  Google Scholar 

  6. Emmerich, M.T.M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Friedrich, T., Horoba, C., Neumann, F.: Multiplicative approximations and the hypervolume indicator. In: Proc. 11th Annual Conference on Genetic and Evolutionary Computation (GECCO 2009), pp. 571–578 (2009)

    Google Scholar 

  8. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evolutionary Computation 15, 1–28 (2007)

    Article  Google Scholar 

  9. Knowles, J.D., Corne, D.: Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Trans. Evolutionary Computation 7, 100–116 (2003)

    Article  Google Scholar 

  10. Knowles, J.D., Corne, D.W., Fleischer, M.: Bounded archiving using the Lebesgue measure. In: Proc. IEEE Congress on Evolutionary Computation (CEC 2003), vol. 4, pp. 2490–2497.

    Google Scholar 

  11. Kumar, R., Banerjee, N.: Running time analysis of a multiobjective evolutionary algorithm on simple and hard problems. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 112–131. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evolutionary Computation 10(3), 263–282 (2002)

    Article  Google Scholar 

  13. Lizarraga-Lizarraga, G., Hernandez-Aguirre, A., Botello-Rionda, S.: G-metric: an m-ary quality indicator for the evaluation of non-dominated sets. In: Proc. 10th Annual Conference on Genetic and Evolutionary Computation (GECCO 2008), pp. 665–672 (2008)

    Google Scholar 

  14. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Proc. 41st Annual Symposium on Foundations of Computer Science (FOCS 2000), pp. 86–92 (2000)

    Google Scholar 

  15. Rudin, W.: Real and complex analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  16. Suttorp, T., Hansen, N., Igel, C.: Efficient covariance matrix update for variable metric evolution strategies. Machine Learning 75, 167–197 (2009)

    Article  Google Scholar 

  17. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evolutionary Computation 3, 257–271 (1999)

    Article  Google Scholar 

  19. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bringmann, K., Friedrich, T. (2010). Tight Bounds for the Approximation Ratio of the Hypervolume Indicator. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15844-5_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15843-8

  • Online ISBN: 978-3-642-15844-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics