Nothing Special   »   [go: up one dir, main page]

Skip to main content

How to Choose Solutions for Local Search in Multiobjective Combinatorial Memetic Algorithms

  • Conference paper
Parallel Problem Solving from Nature, PPSN XI (PPSN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6238))

Included in the following conference series:

Abstract

This paper demonstrates that the performance of multiobjective memetic algorithms (MOMAs) for combinatorial optimization strongly depends on the choice of solutions to which local search is applied. We first examine the effect of the tournament size to choose good solutions for local search on the performance of MOMAs. Next we examine the effectiveness of an idea of applying local search only to non-dominated solutions in the offspring population. We show that this idea has almost the same effect as the use of a large tournament size because both of them lead to high selection pressures. Then we examine different configurations of genetic operators and local search in MOMAs. For example, we examine the use of genetic operators after local search. In this case, improved solutions by local search are used as parents for recombination while local search is applied to the current population after generation update.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  2. Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Use of Heuristic Local Search for Single-Objective Optimization in Multiobjective Memetic Algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 743–752. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Ishibuchi, H., Murata, T.: Multi-Objective Genetic Local Search Algorithm. In: Proc. of 1996 IEEE International Conference on Evolutionary Computation, pp. 119–124 (1996)

    Google Scholar 

  4. Ishibuchi, H., Murata, T.: A Multi-Objective Genetic Local Search Algorithm and Its Application to Flowshop Scheduling. IEEE Trans. on Systems, Man, and Cybernetics - Part C: Applications and Reviews 28, 392–403 (1998)

    Article  Google Scholar 

  5. Ishibuchi, H., Narukawa, K.: Some Issues on the Implementation of Local Search in Evolutionary Multiobjective Optimization. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1246–1258. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between Genetic Search and Local Search in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling. IEEE Trans. on Evolutionary Computation 7, 204–223 (2003)

    Article  Google Scholar 

  7. Jaszkiewicz, A.: Genetic Local Search for Multi-Objective Combinatorial Optimization. European Journal of Operational Research 137, 50–71 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search on the 0/1 Knapsack Problem - A Comparative Experiment. IEEE Trans. on Evolutionary Computation 6, 402–412 (2002)

    Article  Google Scholar 

  9. Knowles, J.D., Corne, D.W.: M-PAES: A Memetic Algorithm for Multiobjective Optimization. In: Proc. of 2000 IEEE Congress on Evolutionary Computation, pp. 325–332 (2000)

    Google Scholar 

  10. Knowles, J.D., Corne, D.W.: A Comparison of Diverse Approaches to Memetic Multiobjective Combinatorial Optimization. In: Proc. of 2000 Genetic and Evolutionary Computation Conference Workshop Program: WOMA I, pp. 103–108 (2000)

    Google Scholar 

  11. Knowles, J.D., Corne, D.W.: Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospective. In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms, pp. 313–352. Springer, Berlin (2005)

    Chapter  Google Scholar 

  12. Krasnogor, N., Smith, J.: A Tutorial for Competent Memetic Algorithms: Model, Taxonomy, and Design Issues. IEEE Trans. on Evolutionary Computation 9, 474–488 (2005)

    Article  Google Scholar 

  13. Lara, A., Sanchez, G., Coello, C.A.C., Schutze, O.: HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms. IEEE Trans. on Evolutionary Computation 14, 112–132 (2010)

    Article  Google Scholar 

  14. Moscato, P.: Memetic Algorithms: A Short Introduction. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 219–234. McGraw-Hill, London (1999)

    Google Scholar 

  15. Murata, T., Ishibuchi, H., Gen, M.: Specification of Genetic Search Directions in Cellular Multi-Objective Genetic Algorithm. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 82–95. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Ong, Y.S., Keane, A.J.: Meta-Lamarckian Learning in Memetic Algorithms. IEEE Trans. on Evolutionary Computation 8, 99–110 (2004)

    Article  Google Scholar 

  17. Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of Adaptive Memetic Algorithms: A Comparative Study. IEEE Trans. on Systems, Man, and Cybernetics: Part B - Cybernetics 36, 141–152 (2006)

    Google Scholar 

  18. Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. on Evolutionary Computation 11, 712–731 (2007)

    Article  Google Scholar 

  19. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3, 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishibuchi, H., Hitotsuyanagi, Y., Wakamatsu, Y., Nojima, Y. (2010). How to Choose Solutions for Local Search in Multiobjective Combinatorial Memetic Algorithms. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15844-5_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15843-8

  • Online ISBN: 978-3-642-15844-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics