Abstract
This paper demonstrates that the performance of multiobjective memetic algorithms (MOMAs) for combinatorial optimization strongly depends on the choice of solutions to which local search is applied. We first examine the effect of the tournament size to choose good solutions for local search on the performance of MOMAs. Next we examine the effectiveness of an idea of applying local search only to non-dominated solutions in the offspring population. We show that this idea has almost the same effect as the use of a large tournament size because both of them lead to high selection pressures. Then we examine different configurations of genetic operators and local search in MOMAs. For example, we examine the use of genetic operators after local search. In this case, improved solutions by local search are used as parents for recombination while local search is applied to the current population after generation update.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6, 182–197 (2002)
Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Use of Heuristic Local Search for Single-Objective Optimization in Multiobjective Memetic Algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 743–752. Springer, Heidelberg (2008)
Ishibuchi, H., Murata, T.: Multi-Objective Genetic Local Search Algorithm. In: Proc. of 1996 IEEE International Conference on Evolutionary Computation, pp. 119–124 (1996)
Ishibuchi, H., Murata, T.: A Multi-Objective Genetic Local Search Algorithm and Its Application to Flowshop Scheduling. IEEE Trans. on Systems, Man, and Cybernetics - Part C: Applications and Reviews 28, 392–403 (1998)
Ishibuchi, H., Narukawa, K.: Some Issues on the Implementation of Local Search in Evolutionary Multiobjective Optimization. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1246–1258. Springer, Heidelberg (2004)
Ishibuchi, H., Yoshida, T., Murata, T.: Balance between Genetic Search and Local Search in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling. IEEE Trans. on Evolutionary Computation 7, 204–223 (2003)
Jaszkiewicz, A.: Genetic Local Search for Multi-Objective Combinatorial Optimization. European Journal of Operational Research 137, 50–71 (2002)
Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search on the 0/1 Knapsack Problem - A Comparative Experiment. IEEE Trans. on Evolutionary Computation 6, 402–412 (2002)
Knowles, J.D., Corne, D.W.: M-PAES: A Memetic Algorithm for Multiobjective Optimization. In: Proc. of 2000 IEEE Congress on Evolutionary Computation, pp. 325–332 (2000)
Knowles, J.D., Corne, D.W.: A Comparison of Diverse Approaches to Memetic Multiobjective Combinatorial Optimization. In: Proc. of 2000 Genetic and Evolutionary Computation Conference Workshop Program: WOMA I, pp. 103–108 (2000)
Knowles, J.D., Corne, D.W.: Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospective. In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms, pp. 313–352. Springer, Berlin (2005)
Krasnogor, N., Smith, J.: A Tutorial for Competent Memetic Algorithms: Model, Taxonomy, and Design Issues. IEEE Trans. on Evolutionary Computation 9, 474–488 (2005)
Lara, A., Sanchez, G., Coello, C.A.C., Schutze, O.: HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms. IEEE Trans. on Evolutionary Computation 14, 112–132 (2010)
Moscato, P.: Memetic Algorithms: A Short Introduction. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 219–234. McGraw-Hill, London (1999)
Murata, T., Ishibuchi, H., Gen, M.: Specification of Genetic Search Directions in Cellular Multi-Objective Genetic Algorithm. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 82–95. Springer, Heidelberg (2001)
Ong, Y.S., Keane, A.J.: Meta-Lamarckian Learning in Memetic Algorithms. IEEE Trans. on Evolutionary Computation 8, 99–110 (2004)
Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of Adaptive Memetic Algorithms: A Comparative Study. IEEE Trans. on Systems, Man, and Cybernetics: Part B - Cybernetics 36, 141–152 (2006)
Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. on Evolutionary Computation 11, 712–731 (2007)
Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3, 257–271 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ishibuchi, H., Hitotsuyanagi, Y., Wakamatsu, Y., Nojima, Y. (2010). How to Choose Solutions for Local Search in Multiobjective Combinatorial Memetic Algorithms. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_52
Download citation
DOI: https://doi.org/10.1007/978-3-642-15844-5_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15843-8
Online ISBN: 978-3-642-15844-5
eBook Packages: Computer ScienceComputer Science (R0)