Nothing Special   »   [go: up one dir, main page]

Skip to main content

Negative Drift in Populations

  • Conference paper
Parallel Problem Solving from Nature, PPSN XI (PPSN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6238))

Included in the following conference series:

Abstract

An important step in gaining a better understanding of the stochastic dynamics of evolving populations, is the development of appropriate analytical tools. We present a new drift theorem for populations that allows properties of their long-term behaviour, e.g. the runtime of evolutionary algorithms, to be derived from simple conditions on the one-step behaviour of their variation operators and selection mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis 10(2), 141–171 (1998)

    Google Scholar 

  2. Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 415–426. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Haccou, P., Jagers, P., Vatutin, V.: Branching Processes: Variation, Growth, and Extinction of Populations. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  4. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Advances in Applied Probability 14(3), 502–525 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3(1), 21–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kolotilina, L.Y.: Bounds and inequalities for the Perron root of a nonnegative matrix. Journal of Mathematical Sciences 121(4), 2481–2507 (2004)

    Article  MathSciNet  Google Scholar 

  7. Lehre, P.K., Yao, X.: On the impact of the mutation-selection balance on the runtime of evolutionary algorithms. In: Proc. of FOGA 2009, pp. 47–58. ACM, New York (2009)

    Chapter  Google Scholar 

  8. Minc, H.: On the maximal eigenvector of a positive matrix. SIAM Journal on Numerical Analysis 7(3), 424–427 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional selection: landscapes and efficiency. In: Proc. of GECCO 2009, pp. 835–842. ACM, New York (2009)

    Chapter  Google Scholar 

  10. Sasaki, G.H., Hajek, B.: The time complexity of maximum matching by simulated annealing. Journal of the ACM 35(2), 387–403 (1988)

    Article  MathSciNet  Google Scholar 

  11. Seneta, E.: Non-Negative Matrices. George Allen & Unwin Ltd., London (1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lehre, P.K. (2010). Negative Drift in Populations. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15844-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15843-8

  • Online ISBN: 978-3-642-15844-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics