Abstract
Independent Component Analysis (ICA) is a statistical computation method that transforms a random vector in another one whose components are independent. Because the marginal distributions are usually unknown, the final problem is reduced to an optimization of a contrast function, a function that measures the independence of the components. In this paper, the stochastic global Particle Swarm Optimization (PSO) algorithm is used to solve the optimization problem. The PSO is used to separate some selected benchmarks signals based on two different contrast functions. The results obtained using the PSO are compared with classical ICA algorithms. It is shown that the PSO is a more powerful and robust technique and capable of finding the original signals or sources when classical ICA algorithms give poor results or fail to converge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cardoso, J.F.: Blind Signal Separation: statistical principles. Proceedings of the IEEE 86(10), 2009–2025 (1998)
Krusienski, D.J., Jenkins, W.K.: Nonparametric density estimation based ICA via PSO. In: Proc. ICASSP 2005, vol. IV, pp. 357–360 (2005)
Liu, C.C., Sun, T.Y., Li, K.Y., Hsieh, S.T., Tsai, S.J.: Blind Source Separation using cluster PSO technique. In: Proc. 25th IAESTED Artificial Intelligence and Applications, pp. 289–294 (2007)
Cardoso, J.F., Souloumiac, A.: Blind beamforming for non Gaussian signals. Proc. Inst. Elec. Eng. 140(6), 395–401 (1993)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)
Clerc, M., Kennedy, J.: The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)
Hyvarinen, A., Oja, E.: A fast fixed point algorithm for independent component analysis. Neural Computation 9(7), 1483–1492 (1997)
Cichocki, A., Amari, S., Siwek, K., Tanaka, T., Phan, A.H., Zdunek, R.: ICALAB – MATLAB Toolbox Ver. 3 for signal processing
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Igual, J., Ababneh, J., Llinares, R., Miro-Borras, J., Zarzoso, V. (2010). Solving Independent Component Analysis Contrast Functions with Particle Swarm Optimization. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_63
Download citation
DOI: https://doi.org/10.1007/978-3-642-15822-3_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15821-6
Online ISBN: 978-3-642-15822-3
eBook Packages: Computer ScienceComputer Science (R0)