Nothing Special   »   [go: up one dir, main page]

Skip to main content

Solving Independent Component Analysis Contrast Functions with Particle Swarm Optimization

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6353))

Included in the following conference series:

  • 1819 Accesses

Abstract

Independent Component Analysis (ICA) is a statistical computation method that transforms a random vector in another one whose components are independent. Because the marginal distributions are usually unknown, the final problem is reduced to an optimization of a contrast function, a function that measures the independence of the components. In this paper, the stochastic global Particle Swarm Optimization (PSO) algorithm is used to solve the optimization problem. The PSO is used to separate some selected benchmarks signals based on two different contrast functions. The results obtained using the PSO are compared with classical ICA algorithms. It is shown that the PSO is a more powerful and robust technique and capable of finding the original signals or sources when classical ICA algorithms give poor results or fail to converge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cardoso, J.F.: Blind Signal Separation: statistical principles. Proceedings of the IEEE 86(10), 2009–2025 (1998)

    Article  Google Scholar 

  2. Krusienski, D.J., Jenkins, W.K.: Nonparametric density estimation based ICA via PSO. In: Proc. ICASSP 2005, vol. IV, pp. 357–360 (2005)

    Google Scholar 

  3. Liu, C.C., Sun, T.Y., Li, K.Y., Hsieh, S.T., Tsai, S.J.: Blind Source Separation using cluster PSO technique. In: Proc. 25th IAESTED Artificial Intelligence and Applications, pp. 289–294 (2007)

    Google Scholar 

  4. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non Gaussian signals. Proc. Inst. Elec. Eng. 140(6), 395–401 (1993)

    Google Scholar 

  5. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  6. Clerc, M., Kennedy, J.: The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    Article  Google Scholar 

  7. Hyvarinen, A., Oja, E.: A fast fixed point algorithm for independent component analysis. Neural Computation 9(7), 1483–1492 (1997)

    Article  Google Scholar 

  8. Cichocki, A., Amari, S., Siwek, K., Tanaka, T., Phan, A.H., Zdunek, R.: ICALAB – MATLAB Toolbox Ver. 3 for signal processing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Igual, J., Ababneh, J., Llinares, R., Miro-Borras, J., Zarzoso, V. (2010). Solving Independent Component Analysis Contrast Functions with Particle Swarm Optimization. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15822-3_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15821-6

  • Online ISBN: 978-3-642-15822-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics