Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Funny Proverb Generation System Based on Sukashi

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6354))

Included in the following conference series:

Abstract

In this paper, we propose a system which produces funny proverbs. This system uses the punch line framework named Sukashi. That is, by changing the end of the line, the proposed system produces a funny sentence. In this system, we employ Google N-grams to make a lot of Sukashi candidates. After that, the system extracts parameters from each word in each candidate. We choose parameters such as words’ sounding, length, imageability, similarity and concrete level. The system selects candidates by using fuzzy rules. The performance of the proposed system has been evaluated by subjective experiments and obtained satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. De Boni, M., Richardson, A., Hurling, R.: Humour, Relationship Maintenance and Personality Matching in Automated Dialogue: A Controlled Study. Interact. Comput. 20(2), 342–353 (2007)

    Google Scholar 

  2. Binsted, K., Takizawa, O.: BOKE – A Japanese Punning Riddle Generator. Journal of the Japanese Society for Artificial Intelligence 13(6), 920–927 (1997)

    Google Scholar 

  3. Waller, A., Black, R., O’Mara, D.A., Pain, H., Ritchie, G., Manurung, R.: Evaluating the STANDUP Pun Generating Software with Children with Cerebral Palsy. ACM Trans. Access. Comput. 1(3), 1–27 (2009)

    Article  Google Scholar 

  4. Fukui, N.: The Techniques for Making Laugher – Laugh Makes Us Discover the World, Sekai Shisousya (2002)

    Google Scholar 

  5. Yet Another Part-of-Speech and Morphological Analyzer, http://mecab.sourceforge.net/

  6. Kudo, T., Kazawa, H.: Japanese Google N-grams, vol.1. Gengo-Shigen-Kyokai (GSK)

    Google Scholar 

  7. Oda, S.: Laughing and Humor. Chikuma Shobo (1986)

    Google Scholar 

  8. Needleman, S.B., Wunsch, C.D.: A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins. Journal of Molecular Biology 48(3), 443–453 (1970)

    Article  Google Scholar 

  9. Sabsevitz, D., Medler, D., Seidenberg, M., Binder, J.: Modulation of the Semantic System by Word Imageability. Neuro Image 27(1), 188–200 (2005)

    Google Scholar 

  10. Sakuma, N., Ijuin, M., Fushimi, T., Tatsumi, I., Tanaka, M., Amano, S., Kondo, K.: “NTT Database Series ”Japanese Vocabulary Attribution. Word Imageability 8(1) (2005)

    Google Scholar 

  11. Ishikawa Laboratory, Takushoku University, Computational System for the Similarity between Concepts(Words), http://www.cs.takushoku-u.ac.jp/ai/ruiji/Similarity_System.cgi

  12. Noguchi, Y., Shimizu, R., Sugimoto, K., Ishikawa, T.: An Improved Tool for Measuring Semantic Similarity between Words. In: The 69th National Convention of Information Processing Society of Japan, vol. 2, pp. 2545–2546 (March 2007)

    Google Scholar 

  13. Kawashima, T., Ishikawa, T.: An Evaluation of Knowledge Base of Words and Thesaurus on Measuring the Semantic Similarity between Words. In: The 18th Annual Conference of the Japanese Society for Artificial Intelligence, vol. 18, pp. 2D2–2D10 (2004)

    Google Scholar 

  14. Shoten, I.: Nihongo Goi-Taikei CD-ROM, http://www.kecl.ntt.co.jp/mtg/resources/GoiTaikei/

  15. Sugeno, M.: Fuzzy Control. Nikkan Kogyo (1988)

    Google Scholar 

  16. Kurogo, T.: Kurogo’s Proverb Dictionary, http://www.geocities.jp/tomomi965/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamane, H., Hagiwara, M. (2010). A Funny Proverb Generation System Based on Sukashi . In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15825-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15825-4_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15824-7

  • Online ISBN: 978-3-642-15825-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics