Nothing Special   »   [go: up one dir, main page]

Skip to main content

Analysis of Astrophysical Ice Analogs Using Regularized Alternating Least Squares

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6352))

Included in the following conference series:

  • 1837 Accesses

Abstract

The determination of the compounds that are present in molecular clouds is carried out from the study of the infrared spectrum of astrophysical ices. This analysis plays a fundamental role in the prediction of the future evolution of the cloud under study. The process is simulated in the laboratory under similar conditions of thermal and energetic processing, recording the infrared absorption spectrum of the resultant ice. The spectrum of each ice can be modeled as the linear instantaneous superposition of the spectrum of the different compounds, so a Source Separation approach is proper. We propose the use of Alternating Least Squares (ALS) and a Regularized version (RALS) to identify the molecules that are present in the ice mixtures. Since the spectra and abundances are non-negative, a non-negativity constraint can be applied to obtain solutions with physical meaning. We perform several simulations of synthetic mixtures of ices in order to compare both solutions and to show the usefulness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allamandola, L.J., Bernstein, M.P., Sandford, S.A., Walker, R.L.: Evollution of Interestellar Ices. Space Science Reviews 90, 219–232 (1999)

    Article  Google Scholar 

  2. Baratta, G.A., Palumbo, M.E., Strazzulla, G.: Laboratory and astronomical IR spectra: an experimental clue for their comparison. Astronomy and Astrophysics 357, 1045–1050 (1997)

    Google Scholar 

  3. Igual, J., Llinares, R., Salazar, A.: Source Separation of Astrophysical Ice Mixtures. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 368–375. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Igual, J., Llinares, R.: An informed source separation of astrophysical ice analogs. Digital Signal Processing 17, 947–964 (2007)

    Article  Google Scholar 

  5. Igual, J., Llinares, R.: Nonnegative Matrix Factorization of Laboratory Astrophysical Ice Mixtures. IEEE Journal of Selected Topics in Signal Processing 2, 697–706 (2008)

    Article  Google Scholar 

  6. Jiang, J., Liang, Y., Ozaki, Y.: Principles and methodologies in self-modeling curve resolution. Chemom. Intell. Lab. Syst. 71, 1–12 (2004)

    Article  Google Scholar 

  7. de Juan, A., Cassasas, E., Tauler, R.: Sot-Modeling of analytical data. Encyclopedia of analytical chemistry: instrumentation and applications (2000)

    Google Scholar 

  8. Garrido, M., Rius, F.X., Larrechi, M.S.: Multivariate curve resolution–alternating least squares (MCR-ALS) applied to spectroscopic data from monitoring chemical reactions processes. Analytical and Bioanalytical Chemistry 390, 2059–2066 (2008)

    Article  Google Scholar 

  9. Cichocki, A., Zdunek, R.: Regularized alternating least squares algorithms for non-negative matrix/tensor factorization. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4493, pp. 793–802. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. http://www.strw.leidenuniv.nl/~schutte/database.html

  11. Cichocki, A., Zdunek, R.: NMFLAB for signal processing. Technical report, Laboratory for Advanced Brain Signal Processing, BSI RIKEN, Saitama, Japan (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Llinares, R., Igual, J., Miro-Borras, J., Camacho, A. (2010). Analysis of Astrophysical Ice Analogs Using Regularized Alternating Least Squares. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15819-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15819-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15818-6

  • Online ISBN: 978-3-642-15819-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics