Nothing Special   »   [go: up one dir, main page]

Skip to main content

Testing Euclidean Spanners

  • Conference paper
Algorithms – ESA 2010 (ESA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6346))

Included in the following conference series:

  • 1712 Accesses

Abstract

We develop a property testing algorithm with query complexity \(\tilde{\mathcal{O}}(\delta^{-5d} \epsilon^{-5} Dlog^6 \Delta\sqrt{n})\) that tests whether a directed geometric graph G = (P,E) with maximum degree D and vertex set P ⊆ {1,...,Δ}d (for constant d) is a Euclidean (1 + δ)-spanner. Such a property testing algorithm accepts every (1 + δ)-spanner and rejects with high constant probability every graph that is ε-far from this property, i.e., every graph that differs in more than ε|P| edges from every (1 + δ)-spanner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Dar, S., Parnas, M., Ron, D.: Testing of Clustering. SIAM Journal on Discrete Mathematics 16(3), 393–417 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ahn, H.-K., Farshi, M., Knauer, C., Smid, M., Wang, Y.: Dilation-Optimal Edge Deletion in Polygonal Cycles. In: Algorthims and Computation, pp. 88–99. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Alon, N., Fischer, E., Newman, I., Shapira, A.: A combinatorial characterization of the testable graph properties: it’s all about regularity. SIAM Journal on Computing 39(1), 143–167 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Agarwal, P.K., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss, M.: Computing the Detour and Spanning Ratio of Paths, Trees, and Cycles in 2D and 3D. Discr. & Computational Geometry 39(1-3), 17–37 (2007)

    Article  MathSciNet  Google Scholar 

  5. Arya, S., Das, G., Mount, M., Salowe, J.S., Smid, M.: Euclidean spanners: short, thin, and lanky. In: Proceedings of the 27th Annnual ACM Symposium on the Theory of Computing (STOC), pp. 489–498 (1995)

    Google Scholar 

  6. Ben-Zwi, O., Lachish, O., Newman, I.: Lower bounds for testing Euclidean Minimum Spanning Trees. Information Processing Letters 102(6), 219–225 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Batu, T., Fortnow, L., Fischer, E., Kumar, R., Rubinfeld, R., White, P.: Testing Random Variables for Independence and Identity. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 442–451 (2001)

    Google Scholar 

  8. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W., White, P.: Testing that distributions are close. In: Proceedings of the 41st IEEE Symposium on Foundations of Computer Science (FOCS), pp. 259–269 (2000)

    Google Scholar 

  9. Benjamini, I., Schramm, O., Shapira, A.: Every minor-closed property of sparse graphs is testable. In: Proceedings of the 40th Annnual ACM Symposium on the Theory of Computing (STOC), pp. 393–402 (2008)

    Google Scholar 

  10. Blais, E.: Testing juntas nearly optimally. In: Proceedings of the 41st Annnual ACM Symposium on the Theory of Computing (STOC), pp. 151–158 (2009)

    Google Scholar 

  11. Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications to Numerical Problems. In: Proceedings of the 22nd Annnual ACM Symposium on the Theory of Computing (STOC), pp. 73–83 (1990)

    Google Scholar 

  12. Callahan, P.B., Kosaraju, S.R.: Faster algorithms for some geometric graph problems in higher dimensions. In: Proceedings of the 4th Annnual ACM-SIAM Symposium on Discr. Algorithms (SODA), pp. 291–300 (1993)

    Google Scholar 

  13. Chazelle, B., Liu, D., Magen, A.: Sublinear Geometric Algorithms. SIAM Journalon Computing 35(3), 627–646 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Clarkson, K.L.: Approximating algorithms for shortest path motion planning. In: Proceedings of the 19th Annnual ACM Symposium on the Theory of Computing (STOC), pp. 56–65 (1987)

    Google Scholar 

  15. C̃zumaj, A., Ẽrgün, F., F̃ortnow, L., M̃agen, A., Ñewman, I., R̃ubinfeld, R., S̃ohler, C.: Approximating the Weight of the Minimum Spanning Tree in Sublinear Time. SIAM Journal on Comp. 35(1), 91–109 (2005)

    Google Scholar 

  16. Czumaj, A., Shapira, A., Sohler, C.: Testing hereditary properties of nonexpanding bounded-degree graphs. SIAM Journal on Computing 38(6), 2499–2510 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Czumaj, A., Sohler, C.: Property Testing with Geometric Queries. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 266–277. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Czumaj, A., Sohler, C., Ziegler, M.: Property Testing in Computational Geometry. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 155–166. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Czumaj, A., Sohler, C.: Testing Euclidean minimum spanning trees in the plane. ACM Transactions on Alg. 4(3) (2008)

    Google Scholar 

  20. Czumaj, A., Sohler, C.: Estimating the Weight of Metric Minimum Spanning Trees in Sublinear Time. SIAM Journal on Computing 39(3), 904–922 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ergun, F., Kannan, S., Kumar, R., Rubinfeld, R., Viswanathan, M.: Spot-Checkers. J. of Computer and System Sciences 60(3), 717–751 (2000)

    Article  MathSciNet  Google Scholar 

  22. Eppstein, D., Wortman, K.A.: Minimum dilation stars. Computational Geometry: Theory and Applications 37(1), 27–37 (2007)

    MATH  MathSciNet  Google Scholar 

  23. Farshi, M., Giannopoulos, P., Gudmundsson, J.: Finding the best shortcut in a geometric network. In: Proceedings of the 21th Annnual ACM Symposium on Computational Geometry, pp. 327–335 (2005)

    Google Scholar 

  24. Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorodnitsky, A.: Monotonicity testing over general poset domains. In: Proceedings of the 34th Annnual ACM Symposium on the Theory of Computing (STOC), pp. 474–483 (2002)

    Google Scholar 

  25. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing Monotonicity. Combinatorica 20(3), 301–337 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Goldreich, O., Goldwasser, S., Ron, D.: Property Testing and its Connection to Learning and Approximation. J. of the ACM 45(4), 653–750 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Har-Peled, S., Mazumdar, S.: On Coresets for k-Means and k-Median Clustering. In: Proceedings of the 36th Annnual ACM Symposium on the Theory of Computing (STOC), pp. 291–300 (2004)

    Google Scholar 

  28. Keil, M.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988)

    Google Scholar 

  29. Kaufman, T., Sudan, M.: Algebraic property testing: the role of invariance. In: Proceedings of the 40th Annnual ACM Symposium on the Theory of Computing (STOC), pp. 403–412 (2008)

    Google Scholar 

  30. Narasimhan, G., Smid, M.: Approximating the Stretch Factor of Euclidean Graphs. SIAM Journal on Computing, 978–989 (2000)

    Google Scholar 

  31. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  32. Ron, D., Parnas, M.: Testing the Diameter of Graphs. Random Structures & Algorithms 20(2), 165–183 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rademacher, L., Vempala, S.: Testing Geometric Convexity. In: Proceedings of the 24th Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pp. 469–480 (2004)

    Google Scholar 

  34. Rubinfeld, R., Sudan, M.: Robust Characterizations of Polynomials with Applications to Program Testing. SIAM Journal on Computing 25(2), 252–271 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hellweg, F., Schmidt, M., Sohler, C. (2010). Testing Euclidean Spanners. In: de Berg, M., Meyer, U. (eds) Algorithms – ESA 2010. ESA 2010. Lecture Notes in Computer Science, vol 6346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15775-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15775-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15774-5

  • Online ISBN: 978-3-642-15775-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics