Abstract
We consider the Minimum Vertex Cover problem in intersection graphs of axis-parallel rectangles on the plane. We present two algorithms: The first is an EPTAS for non-crossing rectangle families, rectangle families \(\mathcal{R}\) where R 1 ∖ R 2 is connected for every pair of rectangles \(R_1,R_2 \in \mathcal{R}\). This algorithm extends to intersection graphs of pseudo-disks. The second algorithm achieves a factor of (1.5 + ε) in general rectangle families, for any fixed ε> 0, and works also for the weighted variant of the problem. Both algorithms exploit the plane properties of axis-parallel rectangles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kőnig, D.: Gráfok és mátrixok. Matematikai és Fizikai Lapok 38, 116–119 (1931)
Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer Computation, pp. 85–103 (1972)
Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)
Hochbaum, D.: Approximation Algorithms for NP-hard Problems. PWS Publishing Company (1997)
Vazirani, V.: Approximation Algorithms. Springer (2003)
Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
Bar-Yehuda, R., Even, S.: A linear time approximation algorithm for the weighted vertex cover problem. J. Algorithm 2, 198–203 (1981)
Clarkson, K.: A modification of the greedy algorithm for vertex cover. Inform. Process. Lett. 16, 23–25 (1983)
Hochbaum, D.: Approximation algorithms for the set covering and vertex cover problems. SIAM J. Comput. 11(3), 555–556 (1982)
Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algorithms. Mathematical Programming 8, 232–248 (1975)
Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. Annals of Discrete Mathematics 25, 27–46 (1985)
Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm for the vertex cover problem. Acta Informatica 22(1), 115–123 (1985)
Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. SIAM J. Comput. 31(5), 1608–1623 (2002)
Karakostas, G.: A better approximation ratio for the vertex cover problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1043–1050. Springer, Heidelberg (2005)
Dinur, I., Safra, S.: The importance of being biased. In: 34th annual ACM Symposium on Theory of Computing, pp. 33–42 (2002)
Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM J. Comput. 1(2), 180–187 (1972)
Lipton, R., Tarjan, R.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980)
Bar-Yehuda, R., Even, S.: On approximating a vertex cover for planar graphs. In: 14th Annual ACM STOC, pp. 303–309 (1982)
Chiba, N., Nishizeki, T., Saito, N.: Applications of the Lipton and Tarjan’s planar separator theorem. Journal of information processing 4(4), 203–207 (1981)
Baker, B.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)
Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: 20th Annual ACM-SIAM SODA, pp. 892–901 (2009)
Khanna, S., Muthukrishnan, S., Paterson, M.: On approximating rectangle tiling and packing. In: 9th annual ACM-SIAM SODA, 384–393 (1998)
Agarwal, P.K., van Kreveld, M.J., Suri, S.: Label placement by maximum independent set in rectangles. Comput. Geom. 11(3-4), 209–218 (1998)
Doerschler, J., Freeman, H.: A rule-based system for dense-map name placement. Communications of the ACM 35(1), 68–79 (1992)
Freeman, H.: Computer name placement. In: Geographical Information Systems: Principles and Applications, pp. 445–456 (1991)
Lewin-Eytan, L., Naor, J., Orda, A.: Admission control in networks with advance reservations. Algorithmica 40(4), 293–304 (2004)
Fowler, R., Paterson, M., Tanimoto, S.: Optimal packing and covering in the plane are NP-complete. Inform. Process. Lett. 12(3), 133–137 (1981)
Asano, T.: Difficulty of the maximum independent set problem on intersection graphs of geometric objects. In: 6th ICTAG (1991)
Berman, P., DasGupta, B., Muthukrishnan, S., Ramaswami, S.: Efficient approximation algorithms for tiling and packing problems with rectangles. J. Algorithm 41 (2001)
Chan, T.: A note on maximum independent sets in rectangle intersection graphs. Inform. Process. Lett. 89(1), 19–23 (2004)
Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. In: 25th annual ACM SOCG, pp. 333–340 (2009)
Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithm 46 (2003)
Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric intersection graphs. SIAM J. Comput. 34 (2005)
Marx, D.: Efficient approximation schemes for geometric problems? In: 13th annual European Symposium on Algorithms, pp. 448–459 (2005)
van Leeuwen, E.J.: Better approximation schemes for disk graphs. In: 10th Scandinavian Workshop on Algorithm Theory, pp. 316–327 (2006)
Apostolico, A., Atallah, M., Hambrusch, S.: New clique and independent set algorithms for circle graphs. Discrete Appl. Math. 36(1), 1–24 (1992)
Cenek, E., Stewart, L.: Maximum independent set and maximum clique algorithms for overlap graphs. Discrete Appl. Math. 131(1), 77–91 (2003)
Golumbic, M., Hammer, P.: Stability in circular arc graphs. J. Algorithm 9(3), 314–320 (1988)
Hsu, W.L., Tsai, K.H.: Linear time algorithms on circular-arc graphs. Inform. Process. Lett. 40(3), 123–129 (1991)
Golumbic, M.: Algorithmic graph theory and perfect graphs. Academic Press, New York (1980)
Golumbic, M., Trenk, A.: Tolerance Graphs. Cambridge University Press, Cambridge (1985)
Chlebík, M., Chlebíková, J.: Approximation hardness of optimization problems in intersection graphs of d-dimensional boxes. In: 16th Annual ACM-SIAM SODA 2005, pp. 267–276 (2005)
Hochbaum, D., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)
Bar-Yehuda, R., Halldórsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Scheduling split intervals. SIAM J. Comput. 36(1), 1–15 (2006)
Butman, A., Hermelin, D., Lewenstein, M., Rawitz, D.: Optimization problems in multiple-interval graphs. In: 18th annual ACM-SIAM SODA, pp. 268–277 (2007)
Agarwal, P.K., Sharir, M.: Arrangements and their applications. In: Handbook of Computational Geometry, pp. 49–119 (1998)
Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithm 7, 309–322 (1986)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)
Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bar-Yehuda, R., Hermelin, D., Rawitz, D. (2010). Minimum Vertex Cover in Rectangle Graphs. In: de Berg, M., Meyer, U. (eds) Algorithms – ESA 2010. ESA 2010. Lecture Notes in Computer Science, vol 6346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15775-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-15775-2_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15774-5
Online ISBN: 978-3-642-15775-2
eBook Packages: Computer ScienceComputer Science (R0)