Abstract
In this paper, we introduce a novel approach to bridge the gap between the landmark-based and the iconic-based voxel-wise registration methods. The registration problem is formulated with the use of Markov Random Field theory resulting in a discrete objective function consisting of thee parts. The first part of the energy accounts for the iconic-based volumetric registration problem while the second one for establishing geometrically meaningful correspondences by optimizing over a set of automatically generated mutually salient candidate pairs of points. The last part of the energy penalizes locally the difference between the dense deformation field due to the iconic-based registration and the implied displacements due to the obtained correspondences. Promising results in real MR brain data demonstrate the potentials of our approach.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Joshi, S., Miller, M.: Landmark matching via large deformation diffeomorphisms. In: IEEE TIP (2000)
Shen, D., Davatzikos, C.: Hammer: hierarchical attribute matching mechanism for elastic registration. In: IEEE TMI (2002)
Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. In: CVIU (2003)
Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. CVIU (2005)
Rueckert, D., Aljabar, P., Heckemann, R.A., Hajnal, J.V., Hammers, A.: Diffeomorphic registration using b-splines. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 702–709. Springer, Heidelberg (2006)
Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through mrfs and efficient linear programming. In: MedIA (2008)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage (2009)
Johnson, H., Christensen, G.: Consistent landmark and intensity-based image registration. In: IEEE TMI (2002)
Cachier, P., Mangin, J.F., Pennec, X., Riviere, D., Papadopoulos-Orfanos, D., Règis, J.: Multisubject non-rigid registration of brain MRI using intensity and geometric features. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, p. 734. Springer, Heidelberg (2001)
Azar, A., Xu, C., Pennec, X., Ayache, N.: An interactive hybrid non-rigid registration framework for 3d medical images. In: IEEE ISBI (2006)
Biesdorf, A., Wörz, S., Kaiser, H.J., Stippich, C., Rohr, K.: Hybrid spline-based multimodal registration using local measures for joint entropy and mutual information. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 607–615. Springer, Heidelberg (2009)
Hellier, P., Barillot, C.: Coupling dense and landmark-based approaches for nonrigid registration. In: IEEE TMI (2003)
Papademetris, X., Jakowski, A.P., Schultz, R.T., Staib, L.H., Duncan, J.S.: Integrated intensity and point-feature nonrigid registration. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 763–770. Springer, Heidelberg (2004)
Zhan, Y., Shen, D.: Deformable segmentation of 3-d ultrasound prostate images using statistical texture matching method. In: IEEE TMI (2006)
Ou, Y., Davatzikos, C.: Dramms: Deformable registration via attribute matching and mutual-saliency weighting. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 50–62. Springer, Heidelberg (2009)
Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE PAMI 28 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sotiras, A., Ou, Y., Glocker, B., Davatzikos, C., Paragios, N. (2010). Simultaneous Geometric - Iconic Registration. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. MICCAI 2010. Lecture Notes in Computer Science, vol 6362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15745-5_83
Download citation
DOI: https://doi.org/10.1007/978-3-642-15745-5_83
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15744-8
Online ISBN: 978-3-642-15745-5
eBook Packages: Computer ScienceComputer Science (R0)