Abstract
We present a method for automatically segmenting the blood vessels in optic nerve head (ONH) centered spectral-domain optical coherence tomography (SD-OCT) volumes, with a focus on the ability to segment the vessels in the region near the neural canal opening (NCO). The algorithm first pre-segments the NCO using a graph-theoretic approach. Oriented Gabor wavelets rotated around the center of the NCO are applied to extract features in a 2-D vessel-aimed projection image. Corresponding oriented NCO-based templates are utilized to help suppress the false positive tendency near the NCO boundary. The vessels are identified in a vessel-aimed projection image using a pixel classification algorithm. Based on the 2-D vessel profiles, 3-D vessel segmentation is performed by a triangular-mesh-based graph search approach in the SD-OCT volume. The segmentation method is trained on 5 and is tested on 10 randomly chosen independent ONH-centered SD-OCT volumes from 15 subjects with glaucoma. Using ROC analysis, for the 2-D vessel segmentation, we demonstrate an improvement over the closest previous work with an area under the curve (AUC) of 0.81 (0.72 for previously reported approach) for the region around the NCO and 0.84 for the region outside the NCO (0.81 for previously reported approach).
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Wehbe, H., Ruggeri, M., Jiao, S., Gregori, G., Puliafito, C.A., Zhao, W.: Automatic retinal blood flow calculation using spectral domain optical coherence tomography. Optics Express 15(23), 15193–15206 (2007)
Niemeijer, M., Garvin, M.K., van Ginneken, B., Sonka, M., Abràmoff, M.D.: Vessel segmentation in 3D spectral OCT scans of the retina. In: Proc. of SPIE Medical Imaging: Image Processing, vol. 6914, p. 69141R (2008)
Hu, Z., Abràmoff, M.D., Kwon, Y.H., Lee, K., Garvin, M.K.: Automated segmentation of neural canal opening and optic cup in 3-D spectral optical coherence tomography volumes of the optic nerve head. Invest. Ophthalmol. Vis. Sci. (2010) (in press)
Garvin, M.K., Abràmoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imag. 28(9), 1436–1447 (2009)
Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumetric images – a graph-theoretic approach. IEEE Trans. Pattern Anal. Machine Intell. 28(1), 119–134 (2006)
Lee, K., Abràmoff, M.D., Niemeijer, M., Garvin, M.K., Sonka, M.: 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head. In: Proc. of SPIE Medical Imaging: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 7626, p. 76260V (2010)
Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Pattern Anal. Machine Intell. 11(4), 467–476 (2002)
Song, Q., Wu, X., Liu, Y., Smith, M., Buatti, J., Sonka, M.: Optimal graph search segmentation using arc-weighted graph for simultaneous surface detection of bladder and prostate. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 827–835. Springer, Heidelberg (2009)
Yin, Y., Sonka, M.: Electric field theory based approach to search-direction line definition in image segmentation: Application to optimal femur-tibia cartilage segmentation in knee-joint 3-D MR. In: Proc. of SPIE Medical Imaging: Image Processing, vol. 7623, p. 76230W (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hu, Z., Niemeijer, M., Abràmoff, M.D., Lee, K., Garvin, M.K. (2010). Automated Segmentation of 3-D Spectral OCT Retinal Blood Vessels by Neural Canal Opening False Positive Suppression . In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. MICCAI 2010. Lecture Notes in Computer Science, vol 6363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15711-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-15711-0_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15710-3
Online ISBN: 978-3-642-15711-0
eBook Packages: Computer ScienceComputer Science (R0)