Nothing Special   »   [go: up one dir, main page]

Skip to main content

Action Recognition Based on Learnt Motion Semantic Vocabulary

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6297))

Included in the following conference series:

Abstract

This paper presents a novel contextual spectral embedding (CSE) framework for human action recognition, which automatically learns the high-level features (motion semantic vocabulary) from a large vocabulary of abundant mid-level features (i.e. visual words). Our novelty is to exploit the inter-video context between mid-level features for spectral embedding, while the context is captured by the Pearson product moment correlation between mid-level features instead of Gaussian function computed over the vectors of point-wise information as mid-level feature representation. Our goal is to embed the mid-level features into a semantic low-dimensional space, and learn a much compact semantic vocabulary upon the CSE framework. Experiments on two action datasets demonstrate that our approach can achieve significantly improved results with respect to the state of the arts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, J., Yang, Y., Shah, M.: Learning semantic visual vocabularies using diffusion distance. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 461–468 (2009)

    Google Scholar 

  2. Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from videos ”in the wild”. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1996–2003 (2009)

    Google Scholar 

  3. Wang, L., Lu, Z., Ip, H.H.S.: Image categorization based on a hierarchical spatial markov model. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 766–773. Springer, Heidelberg (2009)

    Google Scholar 

  4. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local svm approach. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 32–36 (2004)

    Google Scholar 

  5. Liu, J., Shah, M.: Learning human actions via information maximization. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  6. Savarese, S., DelPozo, A., Niebles, J., Fei-Fei, L.: Spatial-temporal correlatons for unsupervised action classification. In: IEEE Workshop on Motion and video Computing, WMVC 2008, pp. 1–8 (2008)

    Google Scholar 

  7. Wong, S.F., Kim, T.K., Cipolla, R.: Learning motion categories using both semantic and structural information. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–6 (2007)

    Google Scholar 

  8. Lu, Z., Ip, H.H.S.: Image categorization with spatial mismatch kernels. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 397–404 (2009)

    Google Scholar 

  9. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. Int. J. Comput. Vision 79, 299–318 (2008)

    Article  Google Scholar 

  10. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72 (2005)

    Google Scholar 

  11. Ballan, L., Bertini, M., Del Bimbo, A., Seidenari, L., Serra, G.: Effective codebooks for human action categorization (2009)

    Google Scholar 

  12. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 524–531 (2005)

    Google Scholar 

  13. Lafon, S., Lee, A.: Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1393–1403 (2006)

    Article  Google Scholar 

  14. Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S.: Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 40–51 (2007)

    Article  Google Scholar 

  15. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: The Tenth IEEE International Conference on Computer Vision (ICCV 2005), pp. 1395–1402 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, Q., Lu, Z., Ip, H.H.S. (2010). Action Recognition Based on Learnt Motion Semantic Vocabulary. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15702-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15702-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15701-1

  • Online ISBN: 978-3-642-15702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics