Abstract
Diffusion magnetic resonance imaging has led to active research in the analysis of anatomical connectivity in the brain. Many approaches have been proposed to model the diffusion signal and to obtain estimates of fibre tracts. Despite these advances, the question of defining probabilistic connectivity indices which utilize the relevant information in the diffusion MRI signal to indicate connectivity strength, remains largely open. To address this problem we introduce a novel numerical implementation of a stochastic completion field algorithm, which models the diffusion of water molecules in a medium while incorporating the local diffusion MRI data. We show that the approach yields a valid probabilistic estimate of connectivity strength between two seed regions, with experimental results on the MICCAI 2009 Fibre Cup phantom[1].
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Poupon, C., Rieul, B., Kezele, I., Perrin, M., Poupon, F., Mangin, J.: New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models. J. Magnetic Resonance in Medicine 60, 1276–1283 (2008)
Mori, S., Crain, B.J., Chacko, V.P., Zijl, P.C.M.: Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology 45, 265–269 (1999)
Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M.F., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34, 144–155 (2007)
Parker, G.J.M., Wheeler-Kingshott, C.A.M., Barker, G.J.: Estimating distributed anatomical connectivity using fast marching methods and diffuson tensor imaging. IEEE Transaction on Medical Imaging 21, 505–512 (2002)
Berman, J.I., Chung, S., Mukherjee, P., Hess, C.P., Han, E.T., Henry, R.G.: Probabilistic streamline q-ball tractography using the residual bootstrap. NeuroImage 39, 215–222 (2008)
Yo, T.S., Anwander, A., Descoteaux, M., Fillard, P., Poupon, C., Knösche, T.R.: Quantifying brain connectivity: A comparative tractography study. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 886–893. Springer, Heidelberg (2009)
Fletcher, P.T., Tao, R., Jeong, W.K., Whitaker, R.T.: A volumetric approach to quantifying region-to-region white matter connectivity in diffusion tensor MRI. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 346–358. Springer, Heidelberg (2007)
O’Donnell, L., Haker, S., Westin, C.F.: New approaches to estimation of white matter connectivity in diffusion tensor MRI: Elliptic PDEs and geodesics in a tensor-warped space. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 459–466. Springer, Heidelberg (2002)
Batchelor, P.G., Hill, D.L.G., Atkinson, D., Calamante, F., Connelly, A.: Fibre-tracking by solving the diffusion-convection equation. In: Proceedings of Int. Soc. Mag. Reson. Med., Honolulu, vol. 10 (2002)
Momayyez, P., Siddiqi, K.: 3D stochastic completion fields for fiber tractography. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2009), Miami Beach, pp. 178–185 (2009)
Williams, L., Jacobs, D.: Stochastic completion fields: A neural model of illusory contour shape and salience. Neural Computation 9, 837–858 (1997)
Anderson, A.W.: Measurement of fiber orientation distributions using high angular resolution diffusion imaging. J. Magnetic Resonance in Medicine 54, 1194–1206 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
MomayyezSiahkal, P., Siddiqi, K. (2010). Probabilistic Anatomical Connectivity Using Completion Fields. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. MICCAI 2010. Lecture Notes in Computer Science, vol 6361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15705-9_69
Download citation
DOI: https://doi.org/10.1007/978-3-642-15705-9_69
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15704-2
Online ISBN: 978-3-642-15705-9
eBook Packages: Computer ScienceComputer Science (R0)