Nothing Special   »   [go: up one dir, main page]

Skip to main content

Coronary Motion Estimation from CTA Using Probability Atlas and Diffeomorphic Registration

  • Conference paper
Medical Imaging and Augmented Reality (MIAR 2010)

Abstract

In this paper, we present a method for coronary artery motion estimation from 4D cardiac CT angiogram (CTA) data sets. The proposed method potentially allows the construction of patient-specific 4D coronary motion model from pre-operative CTA which can be used for guiding totally endoscopic coronary artery bypass surgery (TECAB). The proposed approach consists of three steps: Firstly, prior to motion tracking, we form a coronary probability atlas from manual segmentations of the CTA scans of a number of subjects. Secondly, the vesselness response image is calculated and enhanced for end-diastolic and end-systolic CTA images in each 4D sequence. Thirdly, we design a special purpose registration framework for tracking the highly localized coronary motion. It combines the coronary probability atlas, the intensity information from the CTA image and the corresponding vesselness response image to fully automate the coronary motion tracking procedure and improve its accuracy. We performed pairwise 3D registration of cardiac time frames by using a multi-channel implementation of the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework, where each channel contains a given level of description of the registered shapes. For validation, we compare the automatically tracked coronaries with those segmented manually at end-diastolic phase for each subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mohr, F.W., Falk, V., Diegeler, A., Walther, T., Gummert, J.F., Bucerius, J., Jacobs, S., Autschbach, R.: Computer-enhanced “robotic” cardiac surgery: Experience in 148 patients. J. Thorac. Cardiovasc. Surg. 121(5), 842–853 (2001)

    Article  Google Scholar 

  2. Dogan, S., Aybek, T., Andressen, E., Byhahn, C., Mierdl, S., Westphal, K., Matheis, G., Moritz, A., Wimmer-Greinecker, G.: Totally endoscopic coronary artery bypass grafting on cardiopulmonary bypass with robotically enhanced telemanipulation: Report of forty-five cases. J. Thorac. Cardiovasc. Surg. 123, 1125–1131 (2002)

    Article  Google Scholar 

  3. Feyter, P.J., Krestin, G.P. (eds.): Computed Tomography of the Coronary Arteries, 2nd edn. Informa Healthcare (2008)

    Google Scholar 

  4. Schaap, M., Metz, C., van Walsum, T., van der Giessen, A., Weustink, A., Mollet, N., Bauer, C., Bogunovifa, H., Castro, C., Deng, X., Dikici, E., ODonnell, T., Frenay, M., Friman, O., Hernandez Hoyos, M., Kitslaar, P., Krissian, K., Kuhnel, C., Luengo-Oroz, M., Orkisz, M., Smedby, O., Styner, M., Szymczak, A., Tek, H., Wang, C., Warfield, S., Zambal, S., Zhang, Y., Krestin, G., Niessen, W.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med. Image Anal. 13(5), 701–714 (2009)

    Article  Google Scholar 

  5. Lesage, D., Angelini, E.D., Funka-Lea, G., Bloch, I.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med. Image Anal. 13, 819–845 (2009)

    Article  Google Scholar 

  6. Metz, C., Schaap, M., van Walsum, T., van der Giessen, A., Weustink, A., Mollet, N., Krestin, G.P., Niessen, W.: Editorial: 3D segmentation in the clinic: A grand challenge II - coronary artery tracking. In: MICCAI 2008 Workshop Proceedings (2008)

    Google Scholar 

  7. Shechter, G., Devernay, F., Quyyumi, A., Coste-Maniere, E., McVeigh, E.: Three- dimensional motion tracking of coronary arteries in biplane cineangiograms. IEEE Trans. Med. Imaging 22(4), 493–603 (2003)

    Article  Google Scholar 

  8. Shechter, G., Resar, J.R., McVeigh, E.R.: Displacement and velocity of the coronary arteries: cardiac and respiratory motion. IEEE Trans. Med. Imaging 25, 369–375 (2006)

    Article  Google Scholar 

  9. Metz, C., Schaap, M., Klein, S., Neefjes, L., Capuano, E., Schultz, C., van Geuns, R.J., Serruys, P.W., van Walsum, T., Niessen, W.J.: Patient specific 4D coronary models from ECG-gated CTA data for intra-operative dynamic alignment of CTA with X-ray images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 369–376. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Beg, F.M., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic ows of diffeomorphisms. International Journal of Computer Vision 61(2), 139–157 (2005)

    Article  Google Scholar 

  11. Ceritoglu, C., Oishi, K., Li, X., Chou, M., Younes, L., Albert, M., Lyketsos, C., van Zijl, P., Miller, M., Mori, S.: Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging. Neuroimage 47(2), 618–627 (2009)

    Article  Google Scholar 

  12. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008)

    Article  Google Scholar 

  13. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)

    Article  Google Scholar 

  14. Chillet, D., Jomier, J., Cool, D., Aylward, S.R.: Vascular atlas formation using a vessel-to-image affine registration method. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 335–342. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Non- rigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  16. Manniesing, R., Viergever, M., Niessen, W.: Vessel enhancing diffusion - a scale space representation of vessel structures. Med. Image Anal. 10, 815–825 (2006)

    Article  Google Scholar 

  17. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  18. Frangi, A., Niessen, W., Hoogeveen, R., van Walsum, T., Viergever, M.: Model- based quantitation of 3D magnetic resonance angiographic images. IEEE Trans. Med. Imaging 18(10), 946–956 (1999)

    Article  Google Scholar 

  19. Weustink, A.C., Mollet, N.R., Pugliese, F., Meijboom, W.B., Nieman, K., Heijenbrok-Kal, M.H., Flohr, T.G., Neefjes, L.A., Cademartiri, F., de Feyter, P.J., Krestin, G.P.: Optimal electrocardiographic pulsing windows and heart rate: Effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology 248(3), 792–798 (2008)

    Article  Google Scholar 

  20. Jia, J., Tang, C.: Image repairing: Robust image synthesis by adaptative ND tensor voting. In: IEEE CVPR, vol. 1, p. 643 (2003)

    Google Scholar 

  21. Risser, L., Plouraboue, F., Descombes, X.: Gap filling of 3-D microvascular networks by tensor voting. IEEE Trans. Med. Imaging 27(5), 674–687 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, D.P. et al. (2010). Coronary Motion Estimation from CTA Using Probability Atlas and Diffeomorphic Registration. In: Liao, H., Edwards, P.J."., Pan, X., Fan, Y., Yang, GZ. (eds) Medical Imaging and Augmented Reality. MIAR 2010. Lecture Notes in Computer Science, vol 6326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15699-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15699-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15698-4

  • Online ISBN: 978-3-642-15699-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics