Abstract
In this paper, we present a method for coronary artery motion estimation from 4D cardiac CT angiogram (CTA) data sets. The proposed method potentially allows the construction of patient-specific 4D coronary motion model from pre-operative CTA which can be used for guiding totally endoscopic coronary artery bypass surgery (TECAB). The proposed approach consists of three steps: Firstly, prior to motion tracking, we form a coronary probability atlas from manual segmentations of the CTA scans of a number of subjects. Secondly, the vesselness response image is calculated and enhanced for end-diastolic and end-systolic CTA images in each 4D sequence. Thirdly, we design a special purpose registration framework for tracking the highly localized coronary motion. It combines the coronary probability atlas, the intensity information from the CTA image and the corresponding vesselness response image to fully automate the coronary motion tracking procedure and improve its accuracy. We performed pairwise 3D registration of cardiac time frames by using a multi-channel implementation of the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework, where each channel contains a given level of description of the registered shapes. For validation, we compare the automatically tracked coronaries with those segmented manually at end-diastolic phase for each subject.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mohr, F.W., Falk, V., Diegeler, A., Walther, T., Gummert, J.F., Bucerius, J., Jacobs, S., Autschbach, R.: Computer-enhanced “robotic” cardiac surgery: Experience in 148 patients. J. Thorac. Cardiovasc. Surg. 121(5), 842–853 (2001)
Dogan, S., Aybek, T., Andressen, E., Byhahn, C., Mierdl, S., Westphal, K., Matheis, G., Moritz, A., Wimmer-Greinecker, G.: Totally endoscopic coronary artery bypass grafting on cardiopulmonary bypass with robotically enhanced telemanipulation: Report of forty-five cases. J. Thorac. Cardiovasc. Surg. 123, 1125–1131 (2002)
Feyter, P.J., Krestin, G.P. (eds.): Computed Tomography of the Coronary Arteries, 2nd edn. Informa Healthcare (2008)
Schaap, M., Metz, C., van Walsum, T., van der Giessen, A., Weustink, A., Mollet, N., Bauer, C., Bogunovifa, H., Castro, C., Deng, X., Dikici, E., ODonnell, T., Frenay, M., Friman, O., Hernandez Hoyos, M., Kitslaar, P., Krissian, K., Kuhnel, C., Luengo-Oroz, M., Orkisz, M., Smedby, O., Styner, M., Szymczak, A., Tek, H., Wang, C., Warfield, S., Zambal, S., Zhang, Y., Krestin, G., Niessen, W.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med. Image Anal. 13(5), 701–714 (2009)
Lesage, D., Angelini, E.D., Funka-Lea, G., Bloch, I.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med. Image Anal. 13, 819–845 (2009)
Metz, C., Schaap, M., van Walsum, T., van der Giessen, A., Weustink, A., Mollet, N., Krestin, G.P., Niessen, W.: Editorial: 3D segmentation in the clinic: A grand challenge II - coronary artery tracking. In: MICCAI 2008 Workshop Proceedings (2008)
Shechter, G., Devernay, F., Quyyumi, A., Coste-Maniere, E., McVeigh, E.: Three- dimensional motion tracking of coronary arteries in biplane cineangiograms. IEEE Trans. Med. Imaging 22(4), 493–603 (2003)
Shechter, G., Resar, J.R., McVeigh, E.R.: Displacement and velocity of the coronary arteries: cardiac and respiratory motion. IEEE Trans. Med. Imaging 25, 369–375 (2006)
Metz, C., Schaap, M., Klein, S., Neefjes, L., Capuano, E., Schultz, C., van Geuns, R.J., Serruys, P.W., van Walsum, T., Niessen, W.J.: Patient specific 4D coronary models from ECG-gated CTA data for intra-operative dynamic alignment of CTA with X-ray images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 369–376. Springer, Heidelberg (2009)
Beg, F.M., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic ows of diffeomorphisms. International Journal of Computer Vision 61(2), 139–157 (2005)
Ceritoglu, C., Oishi, K., Li, X., Chou, M., Younes, L., Albert, M., Lyketsos, C., van Zijl, P., Miller, M., Mori, S.: Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging. Neuroimage 47(2), 618–627 (2009)
Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)
Chillet, D., Jomier, J., Cool, D., Aylward, S.R.: Vascular atlas formation using a vessel-to-image affine registration method. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 335–342. Springer, Heidelberg (2003)
Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Non- rigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)
Manniesing, R., Viergever, M., Niessen, W.: Vessel enhancing diffusion - a scale space representation of vessel structures. Med. Image Anal. 10, 815–825 (2006)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)
Frangi, A., Niessen, W., Hoogeveen, R., van Walsum, T., Viergever, M.: Model- based quantitation of 3D magnetic resonance angiographic images. IEEE Trans. Med. Imaging 18(10), 946–956 (1999)
Weustink, A.C., Mollet, N.R., Pugliese, F., Meijboom, W.B., Nieman, K., Heijenbrok-Kal, M.H., Flohr, T.G., Neefjes, L.A., Cademartiri, F., de Feyter, P.J., Krestin, G.P.: Optimal electrocardiographic pulsing windows and heart rate: Effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology 248(3), 792–798 (2008)
Jia, J., Tang, C.: Image repairing: Robust image synthesis by adaptative ND tensor voting. In: IEEE CVPR, vol. 1, p. 643 (2003)
Risser, L., Plouraboue, F., Descombes, X.: Gap filling of 3-D microvascular networks by tensor voting. IEEE Trans. Med. Imaging 27(5), 674–687 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, D.P. et al. (2010). Coronary Motion Estimation from CTA Using Probability Atlas and Diffeomorphic Registration. In: Liao, H., Edwards, P.J."., Pan, X., Fan, Y., Yang, GZ. (eds) Medical Imaging and Augmented Reality. MIAR 2010. Lecture Notes in Computer Science, vol 6326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15699-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-15699-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15698-4
Online ISBN: 978-3-642-15699-1
eBook Packages: Computer ScienceComputer Science (R0)