Abstract
This paper presents an automatic fractional anisotropy (FA) asymmetry analysis and applies it to determine the FA asymmetry (FAA) changes associated with the sides of seizure origin of patients with temporal lobe epilepsy (TLE) using diffusion tensor imaging (DTI). All the control and patient images are first normalized onto the JHU-DTI-MNI atlas using a simultaneous deformable DTI registration algorithm, and the FA images are warped accordingly. Then, the tract-based spatial statistics (TBSS) algorithm is employed to quantify the FA on white matter (WM) skeletons, which are divided into different sections by overlapping with the 102 WM regions defined by the atlas. The FAA values, i.e., the relative differences of each WM skeleton section pair, are calculated. Statistical analysis is then performed to identify the regions that significantly contributed to the group differences between control and left/right TLE, as well as between left and right TLE. The results indicate that FAA correlates with the side of seizure origin, and those of certain regions are significantly different between normal controls and left or right TLE. The quantitative results can be useful for pre-surgical evaluation of TLE patients and for better understanding of the relationship between fiber tracts with the site of origin of TLE, EEG tests, the syndromes and neural psychological responses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wakana, S., Caprihan, A., Panzenboeck, M.M., Fallon, J.H., Perry, M., Gollub, R.L., Hua, K., Zhang, J., Jiang, H., Dubey, P., Blitz, A., van Zijl, P., Mori, S.: Reproducibility of Quantitative Tractography Methods Applied to Cerebral White Matter. NeuroImage 36, 630–644 (2007)
O’Donnell, L., Westin, C.F.: White Matter Tract Clustering and Correspondence in Populations. Med. Image Comput. Assist. Interv. 8, 140–147 (2005)
Brun, A., Knutsson, H., Park, H.J., Shenton, M.E., Westin, C.F.: Clustering Fiber Traces Using Normalized Cuts. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 368–375. Springer, Heidelberg (2004)
Maddah, M., Grimson, W.E., Warfield, S.K., Wells, W.M.: A Unified Framework for Clustering and Quantitative Analysis of White Matter Fiber Tracts. Medical Image Analysis 12, 191–202 (2008)
Ding, Z., Gore, J.C., Anderson, A.W.: Classification and Quantification of Neuronal Fiber Pathways Using Diffusion Tensor MRI. Magn. Reson. Med. 49, 716–721 (2003)
Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., Hua, K., Faria, A.V., Mahmood, A., Woods, R., Toga, A.W., Pike, G.B., Neto, P.R., Evans, A., Zhang, J., Huang, H., Miller, M.I., van Zijl, P., Mazziotta, J.: Stereotaxic White Matter Atlas Based on Diffusion Tensor Imaging in an Icbm Template. NeuroImage 40, 570–582 (2008)
Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E.: Tract-Based Spatial Statistics: Voxelwise Analysis of Multi-Subject Diffusion Data. NeuroImage 31, 1487–1505 (2006)
Yeh, P.-H., Simpson, K., Durazzo, T.C., Gazdzinski, S., Meyerhoff, D.: Tract-Based Spatial Statistics (Tbss) of Diffusion Tensor Imaging Data in Alcohol Dependence: Abnormalities of the Motivational Neurocircuitry. Psychiatry Research: Neuroimaging 173, 22–30 (2009)
Xue, Z., Li, H., Guo, L., Wong, S.T.: A Local Fast Marching-Based Diffusion Tensor Image Registration Algorithm by Simultaneously Considering Spatial Deformation and Tensor Orientation. NeuroImage 52, 119–130 (2010)
Zhang, H., Yushkevich, P.A., Alexander, D.C., Gee, J.C.: Deformable Registration of Diffusion Tensor MR Images with Explicit Orientation Optimization. Medical Image Analysis 10, 764–785 (2006)
Yeo, B.T., Vercauteren, T., Fillard, P., Pennec, X., Golland, P., Ayache, N., Clatz, O.: Dti Registration with Finite-Strain Differential. In: ISBI, pp. 700–703 (2008)
Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)
Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images. IEEE Transactions on Medical Imaging 18, 712–721 (1999)
Trebuchon-Da Fonseca, A., et al.: Brain regions underlying word finding difficulties in temporal lobe epilepsy. Brain 132, 2772–2784 (2009)
Diehl, B., et al.: Abnormalities in diffusion tensor imaging of the uncinate fasciculus relate to reduced memory in temporal lobe epilepsy. Epilepsia 49, 1409–1418 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, H. et al. (2010). Distinguishing Left or Right Temporal Lobe Epilepsy from Controls Using Fractional Anisotropy Asymmetry Analysis. In: Liao, H., Edwards, P.J."., Pan, X., Fan, Y., Yang, GZ. (eds) Medical Imaging and Augmented Reality. MIAR 2010. Lecture Notes in Computer Science, vol 6326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15699-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-15699-1_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15698-4
Online ISBN: 978-3-642-15699-1
eBook Packages: Computer ScienceComputer Science (R0)