Abstract
A motion trajectory tracking method using a novel visual attention model and kernel density estimation is proposed in this paper. As a crucial step, moving objects detection is based on visual attention. The visual attention model is built by combination of the static and motion feature attention map and a Karhunen-Loeve transform (KLT) distribution map. Since the visual attention analysis is conducted on object level instead of pixel level, the proposed method can detect any kinds of motion objects provided saliency without the affection of objects appearance and surrounding circumstance. After locating the region of moving object, the kernel density is estimated for trajectory tracking. The experimental results show that the proposed method is promising for moving objects detection and trajectory tracking.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Comaniciu, D., Meer, P.: Mean-Shift: A Robust Approach toward Feature Space Analysis. IEEE Trans. PAMI, 1–18 (2002)
Bradski, G.: Computer vision face tracking as a component of perceptual user interface. In: WACV 1998, Princeton, NJ, pp. 214–219 (1998)
Levy, A., Lindenbaum, M.: Sequential Karhunen-Loeve basis extraction and its application to image. IEEE Tran. Image Processing 9, 1371–1374 (2000)
Shan, C., Tan, T., Wei, Y.: Real time hand tracking using a mean shift embedded particle filter. Pattern Recognition, 1958–1970 (2007)
Friedman, N., Russell, S.: Image segmentation in video sequences: A probabilistic approach. In: 13th Conf. Uncertainty in Artificial Intelligence, pp. 175–181 (1997)
Torre, F., Black, M.: Robust principal component analysis for computer vision. In: Proceeding of ICCV 2001, vol. 1, pp. 362–369 (2001)
Mittal, A., Paragios, N.: Motion based background subtraction using adaptive kernel density estimation. In: Proceeding of ICCV 2004, pp. 302–309 (2004)
Rutishauser, U., et al.: Is bottom-up attention useful for object recognition. In: Proceeding of ICCV, pp. 37–44 (2004)
Itti, L., Koch, C., Niebur, E.: A model for saliency based visual attention for rapid scene analysis. IEEE Trans. PAMI 20, 1245–1259 (1998)
Liu, H., Jiang, S., Huang, Q., Xu, C.: A Generic Virtual Content Insertion System Based on Visual Attention Analysis. In: Proceeding of the 16th ACMMM, pp. 379–388 (2008)
Kruizinga, P., Petkov, N.: Computational model of dot pattern selective cells. Biological Cybernetics 83(4), 313–325 (2000)
Zhang, G., Yuan, Z., Zheng, N., et al.: Visual saliency based object tracking. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5994, pp. 246–257. Springer, Heidelberg (2010)
Michael, D., Martin, U., Martin, H., et al.: Saliency driven total variation segmentation. In: Proceeding of ICCV 2009, pp. 817–824 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guo, W., Xu, C., Ma, S., Xu, M. (2010). Visual Attention Based Motion Object Detection and Trajectory Tracking. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15696-0_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-15696-0_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15695-3
Online ISBN: 978-3-642-15696-0
eBook Packages: Computer ScienceComputer Science (R0)