Nothing Special   »   [go: up one dir, main page]

Skip to main content

Visual Attention Based Motion Object Detection and Trajectory Tracking

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6298))

Included in the following conference series:

Abstract

A motion trajectory tracking method using a novel visual attention model and kernel density estimation is proposed in this paper. As a crucial step, moving objects detection is based on visual attention. The visual attention model is built by combination of the static and motion feature attention map and a Karhunen-Loeve transform (KLT) distribution map. Since the visual attention analysis is conducted on object level instead of pixel level, the proposed method can detect any kinds of motion objects provided saliency without the affection of objects appearance and surrounding circumstance. After locating the region of moving object, the kernel density is estimated for trajectory tracking. The experimental results show that the proposed method is promising for moving objects detection and trajectory tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Comaniciu, D., Meer, P.: Mean-Shift: A Robust Approach toward Feature Space Analysis. IEEE Trans. PAMI, 1–18 (2002)

    Google Scholar 

  2. Bradski, G.: Computer vision face tracking as a component of perceptual user interface. In: WACV 1998, Princeton, NJ, pp. 214–219 (1998)

    Google Scholar 

  3. Levy, A., Lindenbaum, M.: Sequential Karhunen-Loeve basis extraction and its application to image. IEEE Tran. Image Processing 9, 1371–1374 (2000)

    Article  MATH  Google Scholar 

  4. Shan, C., Tan, T., Wei, Y.: Real time hand tracking using a mean shift embedded particle filter. Pattern Recognition, 1958–1970 (2007)

    Google Scholar 

  5. Friedman, N., Russell, S.: Image segmentation in video sequences: A probabilistic approach. In: 13th Conf. Uncertainty in Artificial Intelligence, pp. 175–181 (1997)

    Google Scholar 

  6. Torre, F., Black, M.: Robust principal component analysis for computer vision. In: Proceeding of ICCV 2001, vol. 1, pp. 362–369 (2001)

    Google Scholar 

  7. Mittal, A., Paragios, N.: Motion based background subtraction using adaptive kernel density estimation. In: Proceeding of ICCV 2004, pp. 302–309 (2004)

    Google Scholar 

  8. Rutishauser, U., et al.: Is bottom-up attention useful for object recognition. In: Proceeding of ICCV, pp. 37–44 (2004)

    Google Scholar 

  9. Itti, L., Koch, C., Niebur, E.: A model for saliency based visual attention for rapid scene analysis. IEEE Trans. PAMI 20, 1245–1259 (1998)

    Google Scholar 

  10. Liu, H., Jiang, S., Huang, Q., Xu, C.: A Generic Virtual Content Insertion System Based on Visual Attention Analysis. In: Proceeding of the 16th ACMMM, pp. 379–388 (2008)

    Google Scholar 

  11. Kruizinga, P., Petkov, N.: Computational model of dot pattern selective cells. Biological Cybernetics 83(4), 313–325 (2000)

    Article  MATH  Google Scholar 

  12. Zhang, G., Yuan, Z., Zheng, N., et al.: Visual saliency based object tracking. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5994, pp. 246–257. Springer, Heidelberg (2010)

    Google Scholar 

  13. Michael, D., Martin, U., Martin, H., et al.: Saliency driven total variation segmentation. In: Proceeding of ICCV 2009, pp. 817–824 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, W., Xu, C., Ma, S., Xu, M. (2010). Visual Attention Based Motion Object Detection and Trajectory Tracking. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15696-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15696-0_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15695-3

  • Online ISBN: 978-3-642-15696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics