Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Localization System Based on Infrared Vision for Outdoor Mobile Robot

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

An outdoor localization system for mobile robot based on infrared vision is presented. To deal with the changes of light conditions, an omni-directional near infrared (NIR) vision system is developed. The extended Kalman filter (EKF) is used in localization, and to improve the accuracy and robustness of the system. Finally, the experiments demonstrate the system performance in an electrical substation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Guivant, J., Nebot, E.M., Baiker, S.: Localization and map building using laser range sensors in outdoor applications. Journal of Robotic Systems 17, 565–583 (2000)

    Article  MATH  Google Scholar 

  2. Morales, Y., Takeuchi, E., Tsubouchi, T.: Vehicle Localization in Outdoor Woodland Environments with Sensor Fault Detection. In: Proc. IEEE Int. Conf. Robotics and Automation, Pasadena California (May 2008)

    Google Scholar 

  3. Agrawal, M., Konolige, M.: Real-time Localization in Outdoor Environments Using Stereo Vision and Inexpensive GPS. In: Proc. 18th Inter. Conf. Pattern Recognition, vol. 3, pp. 1063–1068 (2006)

    Google Scholar 

  4. Graefenstein, J., Bouzouraa, M.E., et al.: Robust Method for Outdoor Localization of a Mobile Robot Using Received Signal Strength in Low Power Wireless Networks. In: Proc. IEEE Int. Conf. Robotics and Automation, Pasadena California (May 2008)

    Google Scholar 

  5. Weiss, C., Tamimi, H., Masselli, A., et al.: A hybrid approach for vision-based outdoor robot localization using global and local image features. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, San Diego, CA, USA, October 29 - November 2, pp. 1047–1052 (2007)

    Google Scholar 

  6. Blaer, P., Allen, P.: Topological Mobile Robot Localization Using Fast Vision Techniques. In: Proc. IEEE Int. Conf. on Robotics and Automation, Washington DC, USA (May 2002)

    Google Scholar 

  7. Sooyong, L., Jae-Bok, S.: Mobile Robot Localization using Infrared Light Reflecting Landmarks. In: Proc. Int. Conf. Control, Automation and Systems, Seoul, Korea, October 17-20 (2007)

    Google Scholar 

  8. Takiguchi, J., Takeya, A., Nishiguchi, K., et al.: A study of autonomous mobile system in outdoor environment. In: Proc. IEEE Int. Conf. Robotics & Automation, Seoul, Korea, May 21-26 (2001)

    Google Scholar 

  9. Zivkovic, Z., Booij, O.: How did we built our hyperbolic mirror omnidirectional camera-practical issues and basic geometry. Technical Report IAS-UVA-05-04, Informatics Institute, University of Amsterdam (2005)

    Google Scholar 

  10. Centeno, J.A.S., Haertel, V.: An Adaptive Image Enhancement Algorithm. Pattern Recognition 30(7), 1183–1189 (1997)

    Article  Google Scholar 

  11. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Systems, Man, and Cybernetics 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  12. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, New York (1982)

    MATH  Google Scholar 

  13. Williams, S.B., Newman, P., Rosenblatt, J., Dissanayake, G., Durrant-Whyte, H.: Autonomous underwater navigation and control. Robotica 19(5), 481–496 (2001)

    Article  Google Scholar 

  14. Thrun, S.: Probabilistic algorithms in robotics. AI Magazine 21(4), 93–109 (2000)

    Google Scholar 

  15. Scheding, S., Nebot, E.M., Durrant-Whyte, M.: The detection of faults in navigation systems: A frequency domain approach. In: Proc. IEEE Int. Conf. Robotic and Automation, Belgium, pp. 2117–2222 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, J., Chen, W. (2010). A Novel Localization System Based on Infrared Vision for Outdoor Mobile Robot. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15615-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15614-4

  • Online ISBN: 978-3-642-15615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics