Abstract
While myelodysplastic syndromes (MDS) are commonly observed nowadays, the underlying mechanisms remain unclear, not to mention mathematical models for MDS. In this work, by incorporating the concept of stem cell niches, we proposed a minimal mathematical model that can be used as a platform for studying the formation and treatment of MDS. Our model includes two main compartments: bone marrow and peripheral blood, in both compartment normal and abnormal cells exist. Simulation results show that 1) under normal condition, our model is robust to reproduce the hemopoiesis even with different perturbations; 2) by reducing stem cell niches, formation of MDS can be observed in our model; 3) treatments should be used to improve environment in bone marrow, rather than to kill the abnormal cells only.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Valent, P., Horny, H.P., Bennett, J.M., Fonatsch, C., Germing, U., Greenberg, P., Haferlach, T., Haase, D., Kolb, H.J., Krieger, O., Loken, M., van de Loosdrecht, A., Ogata, K., Orfao, A., Pfeilstocker, M., Ruter, B., Sperr, W.R., Stauder, R., Wells, D.A.: Definitions and standards in the diagnosis and treatment of the myelodysplastic syndromes. In: Consensus statements and report from a working conference, vol. 31(6), Leuk Res, pp. 727–736 (2007)
Gondek, L.P., Tiu, R., O’Keefe, C.L., Sekeres, M.A., Theil, K.S., Maciejewski, J.P.: Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 111(3), 1534–1542 (2008)
Obeyesekere, M.N., Berry, R.W., Spicer, P.P., Korbling, M.: A mathematical model of haemopoiesis as exemplified by CD34 cell mobilization into the peripheral blood. Cell Prolif. 37(4), 279–294 (2004)
Adams, G.B., Scadden, D.T.: The hematopoietic stem cell in its place. Nat. Immunol. 7(4), 333–337 (2006)
Scadden, D.T.: The stem-cell niche as an entity of action. Nature 441(7097), 1075–1079 (2006)
Walker, M.R., Patel, K.K., Stappenbeck, T.S.: The stem cell niche. J. Pathol. 217(2), 169–180 (2009)
Xie, T., Spradling, A.C.: A niche maintaining germ line stem cells in the Drosophila ovary. Science 290(5490), 328–330 (2000)
Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W.G., Ross, J., Haug, J., Johnson, T., Feng, J.Q., Harris, S., Wiedemann, L.M., Mishina, Y., Li, L.: Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960), 836–841 (2003)
Visnjic, D., Kalajzic, Z., Rowe, D.W., Katavic, V., Lorenzo, J., Aguila, H.L.: Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103(9), 3258–3264 (2004)
Potten, C.S., Booth, C., Pritchard, D.M.: The intestinal epithelial stem cell: the mucosal governor. Int. J. Exp. Pathol. 78(4), 219–243 (1997)
Lechler, T., Fuchs, E.: Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437(7056), 275–280 (2005)
Bjerknes, M., Cheng, H.: Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 116(1), 7–14 (1999)
Li, L., Neaves, W.B.: Normal stem cells and cancer stem cells: the niche matters. Cancer Res. 66(9), 4553–4557 (2006)
Narbonne, P., Roy, R.: Regulation of germline stem cell proliferation downstream of nutrient sensing. Cell Div. 1, 29 (2006)
Joyce, J.A.: Therapeutic targeting of the tumor microenvironment. Cancer Cell 7(6), 513–520 (2005)
Calabrese, C., Poppleton, H., Kocak, M., Hogg, T.L., Fuller, C., Hamner, B., Oh, E.Y., Gaber, M.W., Finklestein, D., Allen, M., Frank, A., Bayazitov, I.T., Zakharenko, S.S., Gajjar, A., Davidoff, A., Gilbertson, R.J.: A perivascular niche for brain tumor stem cells. Cancer Cell 11(1), 69–82 (2007)
Anderson, K.C.: Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions. Exp. Hematol. 35(4 suppl. 1), 155–162 (2007)
Morrison, S.J., Kimble, J.: Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441(7097), 1068–1074 (2006)
Korbling, M., Anderlini, P., Durett, A., Maadani, F., Bojko, P., Seong, D., Giralt, S., Khouri, I., Andersson, B., Mehra, R., van Besien, K., Mirza, N., Przepiorka, D., Champlin, R.: Delayed effects of rhG-CSF mobilization treatment and apheresis on circulating CD34+ and CD34+ Thy-1dim CD38- progenitor cells, and lymphoid subsets in normal stem cell donors for allogeneic transplantation. Bone Marrow Transplant. 18(6), 1073–1079 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhu, X., Xia, L., Lu, L. (2010). A Mathematical Model of Myelodysplastic Syndromes: The Effect of Stem Cell Niches. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-15615-1_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15614-4
Online ISBN: 978-3-642-15615-1
eBook Packages: Computer ScienceComputer Science (R0)