Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Evaluation of DNA Barcoding Using Genetic Programming-Based Process

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

The DNA barcoding is a promising technique for identifications of biological species based on a relatively short sequence of COI gene. A research area to improve the DNA barcoding is to study the classification techniques that utilize common properties of DNA and amino acid sequences such as variable lengths of gene sequences, and the comparison of different reference genes. In this study, we evaluate a classification model for DNA barcoding induced by genetic programming. The proposed method can be adapted for both DNA and amino acid sequences. The performance is evaluated by representing the two types of sequences and one based on their properties. The proposed method evaluates common significant sites on the reference genes which are useful to differentiate between species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hebert, P.D.N., Ratnasingham, S., Waard, J.R.: Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences 270, S96–S99 (2003)

    Article  Google Scholar 

  2. Chase, M.W., Fay, M.F.: Barcoding of plants and fungi. Science 325, 682–683 (2009)

    Article  Google Scholar 

  3. Moritz, C., Cicero, C.: DNA Barcoding: Promise and Pitfalls. PLoS Biol. 2, 1529–1531 (2004)

    Article  Google Scholar 

  4. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution 4, 406–425 (1987)

    Google Scholar 

  5. Guindon, S., Gascuel, O.: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic biology 52, 696–704 (2003)

    Article  Google Scholar 

  6. Austerlitz, F., David, O., Schaeffer, B., Bleakley, K., Olteanu, M., Leblois, R., Veuille, M., Laredo, C.: DNA barcode analysis: a comparison of phylogenetic and statistical classification methods. BMC bioinformatics 10, S10 (2009)

    Article  Google Scholar 

  7. De’ath, G., Fabricius, K.E.: Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81, 3178–3192 (2008)

    Article  Google Scholar 

  8. Breiman, L.: Random forests. Machine learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  9. Leslie, C., Eskin, E., Noble, W.S.: The spectrum kernel: A string kernel for SVM protein classification. In: Proceedings of the Pacific Symposium on Biocomputing, vol. 7, pp. 566–575 (2002)

    Google Scholar 

  10. Menchetti, S., Costa, F., Frasconi, P.: Weighted decomposition kernels. In: Proceedings of the 22nd International Conference on Machine learning, pp. 585–592 (2005)

    Google Scholar 

  11. Bouveyron, C., Girard, S., Olteanu, M.: Supervised classification of categorical data with uncertain labels for DNA barcoding. In: Proceeding of the 16th European Symposium on Artificial Neural Networks (ESANN 2009), pp. 29–34 (2009)

    Google Scholar 

  12. Zhang, A.B., Sikes, D.S., Muster, C., Li, S.Q.: Inferring species membership using DNA sequences with back-propagation neural networks. Systematic Biology 57, 202–216 (2008)

    Article  Google Scholar 

  13. Nielsen, R., Matz, M.: Statistical approaches for DNA barcoding. Systematic Biology 55, 162–169 (2006)

    Article  Google Scholar 

  14. Koza, J., Poli, R.: Genetic programming: on the programming of computers by means of natural selection. The MIT press, Cambridge (1992)

    MATH  Google Scholar 

  15. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. Foundations of genetic algorithms 1, 69–93 (1991)

    MathSciNet  Google Scholar 

  16. Loveard, T., Ciesielski, V.: Representing classification problems in genetic programming. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 2, pp. 1070–1077 (2001)

    Google Scholar 

  17. Barcode of Life Data Systems, http://www.boldsystems.org

  18. Taylor, W.R.: The classification of amino acid conservation. Journal of theoretical Biology 119, 205–218 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zamani, M., Chiu, D.K.Y. (2010). An Evaluation of DNA Barcoding Using Genetic Programming-Based Process. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15615-1_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15614-4

  • Online ISBN: 978-3-642-15615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics