Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Image Reconstruction Method for Magnetic Induction Tomography: Improved Genetic Algorithm

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

Magnetic induction tomography (MIT) is a new medical functional imaging technique. This paper proposes a multi-layer model of the biological tissue. And a new reconstruction method of magnetic induction tomography based on the improved genetic algorithm(GA) was introduced. The GA was improved from the following aspects: the generation of the initial population, selection, crossover and mutation operation. The simulation results indicate that the method can reflect local and large-area bleeding in the shallow of biological tissue, and construct a base for the future clinical brain disease monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Griffiths, H.: Magnetic induction tomography. Meas. Sci. Technol. 12, 1126–1131 (2001)

    Article  Google Scholar 

  2. Korzhenevskii, A.V., Cherepenin, V.A.: Magnetic induction tomography. Comm. Tech. Electronics 42(4), 469–474 (1997)

    Google Scholar 

  3. Morris, A., Griffiths, H., Gough, W.: A numerical model for magnetic induction tomography measurements in biological tissues. Physiol. Meas. 22, 113–119 (2001)

    Article  Google Scholar 

  4. Gencer, N.G., Tek, M.N.: Electrical Conductivity Imaging via Contactless Measurements. IEEE Trans. on Medical Imaging 18(7), 617–627 (1999)

    Article  Google Scholar 

  5. Lei, Y.Z.: Analytic Solution of Harmonic Electromagnetic, pp. 182–187. Science Press, Beijing (2000)

    Google Scholar 

  6. Wu, B., Wu, J.: Research of Fast Genetic Algorithm. Journal of electronic science and technology university 28(1), 49–53 (1999)

    Google Scholar 

  7. Yu, M., Sun, S.D.: The theory and application of Genetic Algorithm, pp. 46–50. Defense Industry Press, Beijing (1999)

    Google Scholar 

  8. Lu, H.Q., Chen, L., Song, Y.S.: A the improved algorithm of crossover operator of genetic algorithm. PLA University of science and technology Journal 8(3), 250–253 (2007)

    MATH  Google Scholar 

  9. Zhang, M.H., Wang, S.J.: Shape optimization using an adaptive crossover operator genetic algorithms. Chinese journal of mechanical engineering 38(1), 51–54 (2002)

    Article  Google Scholar 

  10. Huang, Y.R.: The intelligent optimization algorithm and application, pp. 20–22. Defense Industry Press, Beijing (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, W., Luo, H., Xu, Z., Li, Q. (2010). An Image Reconstruction Method for Magnetic Induction Tomography: Improved Genetic Algorithm. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15615-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15614-4

  • Online ISBN: 978-3-642-15615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics