Nothing Special   »   [go: up one dir, main page]

Skip to main content

Classification of Malignant Lymphomas by Classifier Ensemble with Multiple Texture Features

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

Lymphoma is a cancer affecting lymph nodes. A reliable and precise classification of malignant lymphoma is essential for successful treatment. Current methods for classifying the malignancies rely on a variety of morphological, clinical and molecular variables. In spite of recent progress, there are still uncertainties in diagnosis. Automatic classification of images taken from slides with hematoxylin and eosin stained biopsy samples can allow more consistent and less labor-consuming diagnosis of this disease. In this paper, three well-known texture feature extraction methods including local binary patterns (LBP), Gabor filtering and Gray Level Coocurrence Matrix (GLCM) have been applied to efficiently represent the three types of malignancies, namely, Chronic Lymphotic Leukemia(CLL), Follicular Lymphoma (FL) cells, and Mantle Cell Lymphoma (MCL). Three classifiers of k-Nearest Neighbor, multiple-layer perceptron and Support Vector Machine have been experimented and the simple classifier ensemble scheme majority-voting demonstrated obvious improvement in the classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Xu, Y., McKenna, R.W., Asplund, S.L., Kroft, S.H.: Comparison of immunophenotypes of small B-cell neoplasms in primary lymph node and concurrent blood or marrow samples. American Journal of Clinical Pathology 118(5), 758–764 (2002)

    Article  Google Scholar 

  2. Foran, D.J., Comaniciu, D., Meer, P., Goodell, L.A.: Computer-assisted discrimination among malignant lymphomas and leukemia using immunophenotyping, intelligent image repositories, and telemicroscopy. IEEE Transactions on Information Technology in Biomedicine 4(4), 265–273 (2000)

    Article  Google Scholar 

  3. Orlov, N., Eckely, D.M., Shamir, L., Goldberg, I.G.: Machine Vision for Classifying Biological and Biomedical Images. In: Visualization, Imaging, and Image Processing (VIIP 2008), pp. 192–196. Palma de Mallorca, Spain (2008)

    Google Scholar 

  4. Boland, M., Murphy, R.: A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17(12), 1213–1223 (2001)

    Article  Google Scholar 

  5. Peng, H.: Bioimage informatics: a new area of engineering biology. Bioinformatics 24(17), 1827–1836 (2008)

    Article  Google Scholar 

  6. Kai, H., Robert, F.M.: From quantitative microscopy to automated image understanding. J. Biomed. Opt. 9, 893–912 (2004)

    Article  Google Scholar 

  7. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)

    Article  Google Scholar 

  8. Manjunath, B., Ma, W.: Texture Features for Browsing and Retrieval of Image Data. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)

    Article  Google Scholar 

  9. Haralick, R.: Statistical and Structural Approaches to Texture. Proceedings of the IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. John Wiley and Sons, New York (2001)

    MATH  Google Scholar 

  11. Shamir, L., Orlov, N., Eckley, D.M., Macura, T., Goldberg, I.: IICBU-2008 - A Proposed Benchmark Suite for Biological Imaging. Medical & Biological Engineering & Computing 46, 943–947 (2008)

    Article  Google Scholar 

  12. Orlov, N., Johnston, J., Macura, T., Shamir, L., Goldberg, I.: Computer Vision for Microscopy Applications. In: Obinata, G., Dutta, A. (eds.) Vision Systems: Segmentation and Pattern Recognition, p. 546. I-Tech, Vienna (2007)

    Google Scholar 

  13. Wolf, L., Hassner, T., Taigman, Y.: Descriptor Based Methods in the Wild. In: Faces in Real-Life Images Workshop at the European Conference on Computer Vision (ECCV 2008) (2008)

    Google Scholar 

  14. Polikar, R.: Ensemble Based Systems in Decision Making. IEEE Circuits and Systems Magazine 6(3), 21–45 (2006)

    Article  Google Scholar 

  15. Shawe-Taylor, J., Nello Cristianini, N.: Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  16. Barla, A., Odone, F., Verri, A.: Histogram Intersection Kernel for Image Classification. In: Proc. 2003 International Conference on Image Processing (ICIP 2003), vol. 3, pp. III-513–516 (2003)

    Google Scholar 

  17. Maji, S., Berg, A., Malik, J.: Classification using Intersection Kernel Support Vector Machines is Efficient. In: Proc. IEEE Conference Computer Vision and Pattern Recognition (CVPR 2008), Anchorage, pp. 1–8 (2008)

    Google Scholar 

  18. Smith, J., Chang, S.: Integrated spatial and feature image query. Multimedia Syst. 7(2), 129–140 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, B., Lu, W. (2010). Classification of Malignant Lymphomas by Classifier Ensemble with Multiple Texture Features. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15615-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15614-4

  • Online ISBN: 978-3-642-15615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics