Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Forecast of RBF Neural Networks on Electrical Signals in Senecio Cruentus

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

Weak electrical signals in Senecio cruentus were tested by a touching test system of self-made double shields with platinum sensors. Tested data of electrical signals denoised by the wavelet soft threshold and using Gaussian radial base function (RBF) as the time series at a delayed input window chosen at 50. An intelligent RBF forecasting model was set up to forecast the weak signals of all plants in the globe. Testing result shows that it is feasible to forecast the plant electrical signal for a short period. The forecast data is significant and can be used as preferences for the intelligent automatic control system based on the electrical signal adaptive characteristics of plants to achieve the energy saving on the production both greenhouses and or plastic lookum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, L.Z., Li, H.X., Lin, M., et al.: Analysis of plant electrical signal in the time domain and frequency domain. Journal of China Jiliang University 16(4), 294–298 (2005)

    Google Scholar 

  2. Lou, C.H.: The substance transportation and information transfer during the growth of higher plants (2). Bulletin of Biology 12, 1–3 (1991)

    Google Scholar 

  3. Ren, H.Y., Wang, X.C., Lou, C.H.: The universal existence of electrical signals and its physiological effects in higher plants. Acta Phytophysiologica Sinica 19(1), 97–101 (1993)

    Google Scholar 

  4. Wang, L.Z., Chai, Z.L.: A study on the analyses of the strategic mechanism in ecological adaptability of plant populations by mathematical models and biochemistry, pp. 43–45. Science Press, Beijing (2004)

    Google Scholar 

  5. Wang, Z.Y., Chen, D.S., Huang, L.: Plant physiological status monitoring system and its application in greenhouse. Transactions of the CSAE 16(2), 101–104 (2000)

    MATH  Google Scholar 

  6. Guo, Q.S., Su, C.H., Chen, C.R.: Discussion of prediction earthquake mechanism of bioelectric potential of silk tree. Earthquake Research in Shanxi (supplement), 25–27 (1999)

    Google Scholar 

  7. Ding, J.L., Ding, G.Y., Li, H.X., et al.: Studies on the electrical signal of a seedling in Cucumis sativus L. J. of Zhejiang Science and technology College 18(3), 180–184 (2006)

    Google Scholar 

  8. Wang, L.Z., Li, H.X., Lin, M., et al.: Application statistical analysis method in the study of the plant electrical signal. Journal of Jishou University 27(3), 67–70 (2006)

    MathSciNet  Google Scholar 

  9. Li, H.X., Wang, L.Z., Li, Q.: Study on electrical signal in Clivia miniata. China Jiliang University 16(1), 62–65 (2005)

    Google Scholar 

  10. Guo, J.Y., Yang, X.L.: Electrical signals in higher plants. Chinese Agri, Science Bulletin 21(10), 188–191 (2005)

    Google Scholar 

  11. Wang, L.Z., Cao, W.X., Ling, L.J.: The determination of weak electrical signal in leaves of Lycoris radiata. Journal of Northwest Normal University 36(2), 62–66 (2000)

    Google Scholar 

  12. Wang, L.Z., Li, Q., Li, D.S., et al.: Analysis of electrical signal in Osmanthus fragrans. In: Proc. of SPIE, The 6th International Symposium on Instrumentation and Control Technology, vol. 6357, 63570N-1-7 (2006)

    Google Scholar 

  13. Li, Q., Wang, L.Z., Li, D.S., et al.: Analysis of electrical signal of three species in Compositae. Journal of China Jiliang University 17(4), 333–336 (2006)

    Google Scholar 

  14. Donoho, D.L.: De-moise by soft-thresholding. IEEE Trans. on IT 3, 327–613 (1995)

    Google Scholar 

  15. Nishida, S.: Automatic detection method of P300 waveform in single sweep records by using a neural network. Med. Eng. Phys. 16, 425 (1994)

    Article  MathSciNet  Google Scholar 

  16. Park, J., Sandberg, I.W.: Approximation and radial-basis-function networks. Neural Comp. 5(2), 305–316 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ding, J., Wang, L. (2010). A Forecast of RBF Neural Networks on Electrical Signals in Senecio Cruentus. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15615-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15614-4

  • Online ISBN: 978-3-642-15615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics