Abstract
A novel memory-based particle filter is proposed to achieve robust visual tracking of a target’s pose even with large variations in target’s position and rotation, i.e. large appearance changes. The memory-based particle filter (M-PF) is a recent extension of the particle filter, and incorporates a memory-based mechanism to predict prior distribution using past memory of target state sequence; it offers robust target tracking against complex motion. This paper extends the M-PF to a unified probabilistic framework for joint estimation of the target’s pose and appearance based on memory-based joint prior prediction using stored past pose and appearance sequences. We call it the Memory-based Particle Filter with Appearance Prediction (M-PFAP). A memory-based approach enables generating the joint prior distribution of pose and appearance without explicit modeling of the complex relationship between them. M-PFAP can robustly handle the large changes in appearance caused by large pose variation, in addition to abrupt changes in moving direction; it allows robust tracking under self and mutual occlusion. Experiments confirm that M-PFAP successfully tracks human faces from frontal view to profile view; it greatly eases the limitations of M-PF.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. PAMI 25, 564–577 (2003)
Bradski, G.R.: Computer vision face tracking for use in a perceptual user interface. In: Proc. IEEE Workshop Applications of Computer Vision, pp. 214–219 (1998)
Tua, J., Taob, H., Huang, T.: Face as mouse through visual face tracking. CVIU 108, 35–40 (2007)
Otsuka, K., Araki, S., Ishizuka, K., Fujimoto, M., Heinrich, M., Yamato, J.: A realtime multimodal system for analyzing group meeting by combining face pose tracking and speaker diarization. In: Proc. ACM ICMI, pp. 257–264 (2008)
Gordon, N., Salmond, D., Smith, A.F.M.: Novel approach to non-linear and non-Gaussian Bayesian state estimeation. IEE Proc.F:Communications Rader and Signal Processing 140, 107–113 (1993)
Mikami, D., Otsuka, K., Yamato, J.: Memory-based particle filter for face pose tracking robust under complex dynamics. In: Proc. CVPR, pp. 999–1006 (2009)
Papanikolopoulos, N., Kosla, P., Kanade, T.: Visual tracking of a moving target by a camera mounted on a robot: A combination of control and vision. IEEE Trans. Robot. Autom. 9, 14–35 (1993)
Black, M., Yacoob, Y.: Recognizing facial expressions in image sequence using local parameterized models of image motion. IJCV 25, 23–48 (1997)
Matthews, I., Ishikawa, T., Baker, S.: The template update problem. IEEE Trans. PAMI 26, 810–815 (2004)
Jepson, A.D., Fleet, J.D., El-Margaghi, T.F.: Robust online appearance models for visual tracking. IEEE Trans. PAMI 25, 1296–1311 (2003)
Zelniker, E.E., Hospedales, T.M., Gong, S., Xiang, T.: A unified bayesian framework for adaptive visual tracking. In: Proc. BMVC, pp. 100–200 (2009)
Morency, L.P., Rahimi, A., Darrell, T.: Adaptive view-based appearance models. In: Proc. CVPR, pp. 803–810 (2003)
Morency, L.P., Whitehill, J., Movellan, J.: Monocular head pose estimation using generalized adaptive view-based appearance model. Image and Vision Computing (2009), doi:10.1016/j.imavis.2009.08.004
Ross, D., Lim, J., Lin, R.-S., Yang, M.-H.: Incremental learning for robust visual tracking. IJCV 77(1-3), 125–141 (2008), doi:10.1007/s11263-007-0075-7
Lefèvre, S., Odobez, J.: View-based appearance model online learning for 3d deformable face tracking. In: Proc. VISAPP (2010)
Lozano, O.M., Otsuka, K.: Real-time visual tracker by stream processing. Journal of VLSI Signal Processing Systems (2008), doi:10.1007/s11265-008-0250-2
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mikami, D., Otsuka, K., Yamato, J. (2010). Memory-Based Particle Filter for Tracking Objects with Large Variation in Pose and Appearance. In: Daniilidis, K., Maragos, P., Paragios, N. (eds) Computer Vision – ECCV 2010. ECCV 2010. Lecture Notes in Computer Science, vol 6313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15558-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-15558-1_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15557-4
Online ISBN: 978-3-642-15558-1
eBook Packages: Computer ScienceComputer Science (R0)