Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modeling User Knowledge from Queries: Introducing a Metric for Knowledge

  • Conference paper
Active Media Technology (AMT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6335))

Included in the following conference series:

Abstract

The user’s knowledge plays a pivotal role in the usability and experience of any information system. Based on a semantic network and query logs, this paper introduces a metric for users’ knowledge on a topic. The finding that people often return to several sets of closely related, well-known, topics, leading to certain concentrated, highly activated areas in the semantic network, forms the core of this metric. Tests were performed determining the knowledgeableness of 32,866 users on in total 8 topics, using a data set of more than 6 million queries. The tests indicate the feasibility and robustness of such a user-centered indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of semantic distance. Computational Linguistics 32(1), 13–47 (2006)

    Article  Google Scholar 

  • Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The vocabulary problem in human-system communication. ACM Commun. 30(11), 964–971 (1987)

    Article  Google Scholar 

  • Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User profiles for personalized information access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 54–89. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  • Gervasi, V., Ambriola, V.: Quantitative assessment of textual complexity. In: Merlini Barbaresi, L. (ed.) Complexity in Language and Text, pp. 197–228. Plus Pisa University Press, Pisa, Italy (2003)

    Google Scholar 

  • Kintsch, W.: Text comprehension, memory, and learning. American Psychologist 49(4), 294–303 (1994)

    Article  Google Scholar 

  • LaBerge, D., Samuels, S.J.: Toward a theory of automatic information processing in reading. Cognitive Psychology 6(2), 293–323 (1974)

    Article  Google Scholar 

  • Miller, G.A.: Wordnet: a lexical database for english. ACM Commun. 38(11), 39–41 (1995)

    Article  Google Scholar 

  • Pass, G., Chowdhury, A., Torgeson, C.: A picture of search. In: Proc. 1st Intl. Conf. on Scalable Information Systems. ACM Press, New York (2006)

    Google Scholar 

  • Reeve, J.: The interest-enjoyment distinction in intrinsic motivation. Motivation and Emotion 13(2), 83–103 (1989)

    Article  Google Scholar 

  • Schraw, G., Lehman, S.: Situational interest: A review of the literature and directions for future research. Educational Psychology Review 13(30), 23–52 (2001)

    Article  Google Scholar 

  • Van der Sluis, F., Van den Broek, E.L.: Applying Ockham’s razor to search results: Using complexity measures in information retrieval. In: Information Interaction in Context (IIiX) Symposium, ACM, New York (in Press)

    Google Scholar 

  • Van der Sluis, F., Van den Broek, E.L., Van Dijk, E.M.A.G.: Information Retrieval eXperience (IRX): Towards a human-centered personalized model of relevance. In: Third International Workshop on Web Information Retrieval Support Systems, Toronto, Canada, August 31 (2010)

    Google Scholar 

  • Wedig, S., Madani, O.: A large-scale analysis of query logs for assessing personalization opportunities. In: KDD 2006: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 742–747. ACM, New York (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van der Sluis, F., van den Broek, E.L. (2010). Modeling User Knowledge from Queries: Introducing a Metric for Knowledge . In: An, A., Lingras, P., Petty, S., Huang, R. (eds) Active Media Technology. AMT 2010. Lecture Notes in Computer Science, vol 6335. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15470-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15470-6_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15469-0

  • Online ISBN: 978-3-642-15470-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics